Bringing Together Cross-ISA Checkpoint/Restoration
and AOT Compilation of WebAssembly Programs

Raiki Tamura
Kyoto University
Kyoto, Japan

Kazuyuki Shudo
Kyoto University
Kyoto, Japan
shudo@media.kyoto-u.ac.jp

Abstract

Cross-instruction set architecture (ISA) checkpoint/restora-
tion is becoming increasingly important for live migration

in heterogeneous computing environments, where applica-
tions need to move seamlessly between ARM, x86, and other

processor architectures. While existing approaches either

require compilation without Control-flow Integrity (CFI)

or suffer from significant performance overhead through

interpreter-based execution, this paper presents a novel ap-
proach that enables efficient cross-ISA migration using in-
strumentation during ahead-of-time (AOT) compilation. Our

key insight is that on-stack replacement (OSR) enables cross-
ISA checkpoint/restoration. OSR is a technique for JIT com-
pilers, and we leverage it to transform between ISA-dependent
machine states and ISA-independent WebAssembly states.
Our other notable contribution is a technique enabling check-
pointing without disabling modern CPU security features

such as CFI. We implement the proposed techniques in Wanco,
a WebAssembly AOT compiler supporting Linux on ARM-
v8 and x86-64 architectures. Our evaluation demonstrates

that Wanco achieves efficient cross-ISA migration compared

to CRIU, a standard Linux process migration tool. Wanco

reduces checkpoint time by 1.0-5.1 times and snapshot size

by 1.1-25 times, while incurring an average execution-time

overhead of 36 %.

CCS Concepts: « Software and its engineering — Run-
time environments.

Keywords: WebAssembly, Virtual Machine, Compilers, Live
Migration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

MPLR °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2149-6/25/10
https://doi.org/10.1145/3759426.3760985

Daisuke Kotani
Kyoto University
Kyoto, Japan
kotani@media.kyoto-u.ac.jp

Yasuo Okabe
Kyoto University
Kyoto, Japan
okabe@media.kyoto-u.ac.jp

ACM Reference Format:

Raiki Tamura, Daisuke Kotani, Kazuyuki Shudo, and Yasuo Ok-
abe. 2025. Bringing Together Cross-ISA Checkpoint/Restoration
and AOT Compilation of WebAssembly Programs. In Proceedings
of the 22nd ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR °25), October 12-18,
2025, Singapore, Singapore. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3759426.3760985

1 Introduction

Checkpoint/restoration is a fundamental technique that en-
ables saving and resuming application execution states. It
plays a central role in modern data centers. A key use case is
live migration, which moves running applications between
hosts without service interruption and is essential for load
balancing, system maintenance, and fault tolerance.

Historically, Intel x86 has been the de facto standard archi-
tecture in data centers. However, ARM and Power processors
have recently gained significant traction due to their energy
efficiency and performance benefits [8]. While this growing
architectural diversity offers new opportunities for optimized
resource usage, it also complicates application deployment
and mobility.

In particular, live migration across different instruction
set architectures (ISAs) is a significant challenge, as conven-
tional hypervisor-based solutions save and restore CPU and
memory states, which are inherently ISA-dependent. As a re-
sult, these approaches are inherently limited to homogeneous
environments, where the source and destination machines
share the same ISA. In heterogeneous systems—such as hy-
brid cloud platforms, edge computing setups, and mobile
network infrastructures—cross-ISA checkpoint/restoration
mechanisms are becoming increasingly critical to support
seamless application migration and flexible system manage-
ment.

Several approaches have been proposed to address cross-
ISA checkpoint/restoration. One category of approaches
modifies the operating system to support cross-architecture
migration. Popcorn [9] provides a specialized operating sys-
tem that supports task offloading between heterogeneous

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

https://doi.org/10.1145/3759426.3760985
https://doi.org/10.1145/3759426.3760985

MPLR ’25, October 12-18, 2025, Singapore, Singapore

Raiki Tamura, Daisuke Kotani, Kazuyuki Shudo, and Yasuo Okabe

Table 1. Comparison of virtual machines and native.

Runtime Execution time Portability Source Language

Native baseline ISA-specific Various (C, C++, Rust, etc.)!
Java 1.09-1.91x [12] Portable across ISAs/OSes Java, Kotlin, Scala
WebAssembly 1.55x [18] Portable across ISAs/OSes Various!

nodes by leveraging ISA-independent compiler intermedi-
ate representation (IR). Although Popcorn achieved user
transparency and reasonable efficiency through substantial
engineering effort, it imposes several practical limitations,
including the requirement for application source code and
the constraint that applications must be compiled without
Control-flow Integrity (CFI) features such as Intel CET’s
Shadow Stack.

An alternative approach leverages language virtual ma-
chines, which define programs in an architecture-independent
representation. This representation abstracts away ISA-specific
details of machine state and allows execution through inter-
pretation or just-in-time (JIT) compilation, enabling cross-
platform portability. Virtual machines such as Java [13],
C# [16], and WebAssembly [27] have long been recognized
for their portability across operating systems and CPU ar-
chitectures, making them natural candidates for cross-ISA
live migration. Among these virtual machines, WebAssem-
bly (Wasm) [15] represents a particularly promising solution
for cross-ISA migration. It provides a compact stack-based
program format designed for fast, safe execution in sand-
boxed environments. Unlike traditional virtual machines
that target specific programming languages, WebAssembly
is designed as a compilation target for systems programming
languages such as C, C++, and Rust. Table 1 shows that We-
bAssembly achieves reasonable performance overhead while
maintaining full portability across architectures.

Despite WebAssembly’s growing adoption in cloud com-
puting, edge environments, and web applications, research
on checkpoint/restoration for WebAssembly remains lim-
ited. Existing approaches suffer from significant limitations:
they either rely on slow interpreter-based execution mod-
els [11, 23] or incur substantial migration overhead due to
bytecode-level program transformation [1], making them im-
practical for production environments where low latency and
high performance are critical. The fundamental challenge
lies in implementing checkpoint/restoration functionality
in WebAssembly AOT compilers. While interpreters main-
tain an ISA-independent WebAssembly runtime state during
execution, AOT compilers execute compiled machine code,
where the runtime state becomes ISA-dependent, including
processor registers and call stacks. This architectural differ-
ence makes it inherently challenging to capture and restore
program state across different ISAs.

To address these limitations, this paper proposes tech-
niques to implement cross-ISA checkpoint/restoration func-
tionalities in AOT compilers for language virtual machines.
Our approach employs machine code instrumentation dur-
ing AOT compilation to enable checkpointing at specific
program points without requiring application source code.
Unlike existing approaches that require disabling CFI fea-
tures, our instrumentation technique maintains compatibil-
ity with modern CPU security features by carefully preserv-
ing the program control-flow structure. By leveraging on-
stack replacement (OSR), a technique in JIT compilers, our
approach enables transformation between ISA-dependent
machine states and ISA-independent WebAssembly states,
overcoming the fundamental challenge of AOT compilation
for cross-ISA migration.

We implemented these techniques in Wanco, a WebAssem-
bly AOT compiler that currently supports Linux on ARM-v8
and x86-64 architectures, with plans for additional oper-
ating system support. Our evaluation compares Wanco’s
checkpoint-restoration performance with CRIU [2], a de
facto standard tool for Linux process migration, demonstrat-
ing that Wanco achieves more efficient migration with 36 %
overhead on average.

We make the following contributions.

1. Demonstrate that OSR enables cross-ISA checkpoint
and restoration.

2. Propose a restoration technique that can be used with
CFL

3. Implement and evaluate a WebAssembly AOT com-
piler and show that it can perform live migration effi-
ciently.

2 Background
2.1 WebAssembly

WebAssembly (Wasm) [15] is a portable binary instruction
format designed for efficient and secure execution across
platforms and architectures. Programs written in systems
languages such as C, C++, and Rust can be compiled to Wasm,
achieving near-native performance while retaining platform
independence. Currently, however, Wasm supports only a
restricted set of system-level features. For example, programs
relying on inline assembly or stack unwinding mechanisms
cannot be directly compiled at this time.

Wasm follows a stack-machine execution model: instruc-
tions implicitly push and pop values on a value stack rather

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

Bringing Together Cross-ISA Checkpoint/Restoration and AOT Compilation of WebAssembly PrograM®LR ’25, October 12-18, 2025, Singapore, Singapore

Table 2. WebAssembly runtimes and their performance [28].

Execution model Runtime Performance

Interpreter Wasm3 [28] baseline
Wasmtime [7] 4.0x

T compiler e L] 40
Wasmer LLVM [29] 7.6

AOT compiler WAVM [30] 9.2x

than explicitly naming registers. For example, the sequence
i32.const 1,1i32.const 2, i32.add pushes the constants
1 and 2 onto the stack, then pops them to compute their sum,
leaving the result 3 on the stack.

A WebAssembly module consists of functions, global vari-
ables, linear memory, tables, and import/export definitions.
Functions contain executable code and can call each other
within the module. Global variables and function parame-
ters have specific types (e.g., 132, 164, 32, f64), which are
statically checked before execution. Linear memory serves
as the program’s untyped address space accessible through
load/store instructions at arbitrary byte offsets. Tables store
function references and enable indirect function calls. Im-
ports and exports define the interface between the module
and its execution environment, typically providing access to
system functionality.

WebAssembly System Interface (WASI) [5] provides stan-
dardized APIs for system-level operations such as file system
access and network operations, enabling WebAssembly mod-
ules to run as standalone applications outside web browsers.
For example, path_open provides functionality similar to
the POSIX openat system call in Linux.

2.2 Language Virtual Machines and Migratability

Nurul-Hoque et al. [23] argue that portability and migrata-
bility are key requirements for edge computing. Portability
refers to the ability of applications and services to operate
across heterogeneous environments without modification.
This allows developers to deploy their applications seam-
lessly across different hardware platforms and operating
systems. Migratability, on the other hand, denotes the capa-
bility to dynamically move running applications between
different edge nodes or hosts. This feature is essential for
optimizing resource utilization, ensuring service continu-
ity in the event of node failures, and accommodating user
mobility. Given that modern data centers are increasingly
heterogeneous, portability and migratability are also critical
in cloud computing contexts.

Popcorn utilizes LLVM IR, the intermediate representation
of the LLVM compiler framework [21], to achieve portability.
However, LLVM IR is not fully abstracted with respect to
memory layout. The concrete layout of structs and arrays

depends on target-specific type layout rules, which combine
both ISA and ABI constraints, making it necessary to invest
significant engineering effort when porting across operating
systems and CPU architectures.

We argue that language virtual machines offer a more prac-
tical approach to achieving migratability compared to com-
piler intermediate representations. Unlike LLVM IR, which
ties aspects of run-time state such as memory layout and call-
ing conventions to specific ISAs and ABIs, language virtual
machines abstract away these details, enabling execution
across diverse runtime environments with different execu-
tion models. This versatility is particularly advantageous for
computation offloading scenarios: on resource-constrained
devices such as edge nodes or mobile platforms, interpreters
avoid the compilation latency and memory footprint of JIT
or AOT compilation, while cloud environments can exploit
high-performance AOT compilers. Table 2 illustrates the per-
formance trade-offs among execution models, showing in-
dicative ratios reported in the Wasm3 repository [28]. These
values should be viewed as approximate rather than defini-
tive, since actual performance varies significantly with work-
loads and environments.

2.3 Checkpoint and Restore WebAssembly Runtimes

In this section, we explore two design options to checkpoint
and restore WebAssembly programs with different trade-offs
in terms of performance and implementation complexity.

Transforming WebAssembly Code. The first approach
transforms WebAssembly programs by instrumenting in-
structions to enable pausing and resuming execution. Since
WebAssembly does not natively support resuming execution
from arbitrary points, this approach requires instrumenting
the code with additional instructions to unwind and rewind
the call stack, which introduces overhead in both perfor-
mance and code size.

Asyncify [1] is a tool that performs such instrumentation
to support features like coroutines. It works by transforming
WebAssembly functions to handle asynchronous operations
through stack unwinding and rewinding. Figure 1 shows a
simple example of this transformation from Zakai [31]. The
transformation introduces three execution states: NORMAL

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

MPLR ’25, October 12-18, 2025, Singapore, Singapore

function caller () {
let x = foo();
sleep(100);
return x;

(a) Before transformation.

function caller () {

let x;

if (state == REWINDING) {
// restore x

}

if (state == NORMAL) {
x = foo();

}

if (state == NORMAL

|| callIndex >= 1) {
sleep(100);

if (state == UNWINDING) {
// save calllndex=1 and x
return;
3
}
return x;

(b) After transformation.

Figure 1. Example of transformation with Asyncify [31].

for regular execution, UNWINDING when saving state and
unwinding the call stack, and REWINDING when restoring
state and rewinding to the resumption point. Each potentially
blocking call is assigned a unique call index to identify the
exact resumption location. When a blocking operation occurs
(e.g., sleep(100)), Asyncify saves the current local variables
and call index, then unwinds the stack by returning from all
active functions. Upon resumption, it rewinds by re-entering
the same functions, restoring the saved state, and skipping
already-executed code using the call index.

To enable checkpoint/restoration with Asyncify, blocking
function calls can be replaced with migration points. We eval-
uated the Asyncify-based checkpoint/restoration in Section 5
and found that it causes a substantial increase in code size
due to the instrumentation required for checkpoint/restora-
tion.

Modifying WebAssembly Runtimes. The second option
is to modify implementations of WebAssembly runtimes to
enable migration of WebAssembly programs. This method
offers better performance because the runtime can directly
access the program’s execution state, eliminating the need
to instrument the program with instructions to unwind and

Raiki Tamura, Daisuke Kotani, Kazuyuki Shudo, and Yasuo Okabe

rewind the call stack. However, it requires additional engi-
neering effort from runtime developers to implement the
checkpoint-restoration mechanism in each runtime.

For interpreters, the implementation is relatively straight-
forward because interpreter-based runtimes typically main-
tain an explicit representation of the program’s execution
state [11, 23]. In contrast, JIT and AOT compilers present
greater challenges, as their execution state resides in com-
piled and optimized native code, which utilizes CPU registers
and native call stacks. Implementing checkpoint/restoration
for these runtimes requires establishing a correspondence
between WebAssembly execution state and native execution
state, which not only complicates the migration process but
also increases the implementation complexity.

3 Design

We propose a practical approach to cross-ISA process migra-
tion by performing binary transformation at the machine
code level rather than at the Wasm level (Section 3.2). This
design offers better performance and smaller code size com-
pared to Wasm-level transformation. To handle application-
level security features during migration, we introduce a
restoration trampoline that safely restores execution state
on the destination node (Section 3.3).

We implement this design in Wanco, an AOT compiler
that compiles WebAssembly modules into migratable Linux
executables. Figure 2 illustrates the system architecture of
Wanco. The AOT compiler translates a WebAssembly module
into a Linux object file. During compilation, it instruments
two types of machine code: one to rewind and save the call
stack, and another to check for a checkpoint request and cap-
ture the call stack if such a request is received. Wanco also
provides runtime libraries that implement WASI functionali-
ties and checkpoint-restore capabilities, such as serialization
and deserialization of the runtime state.

3.1 Snapshots

Compiled programs can be paused upon receiving a check-
point request, at which point a snapshot representing the
program’s current state is created. These snapshots encode
the state of the WebAssembly runtime in a manner that is
independent of the underlying operating system and CPU
architecture, enabling program migration across heteroge-
neous platforms. To achieve this, Wanco adopts the runtime
state representation defined by the WebAssembly specifica-
tion interpreter [27], following the approach taken in previ-
ous studies [11, 23].

For WebAssembly programs, a snapshot captures the call
stack, global variables, function tables, and linear memory.
Each frame in the call stack includes the value stack, local
variables, the function identifier, and the WebAssembly in-
struction offset from the beginning of the function.

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

Bringing Together Cross-ISA Checkpoint/Restoration and AOT Compilation of WebAssembly PrograM®LR ’25, October 12-18, 2025, Singapore, Singapore

&—> (Checkpoint
&—>» Restore

I
| I
! 1
AOT & ! |
Instrumentation I !
a.wasm a.out / /
- | Call Stack i Call Stack
I
7 7 ! Global Var. | / Global Var. /
! ——>
WASI Registers I / Function Table /
API !
libc wasi.o Memory | / Linear Memory |
- l——e |
I
| I
7 7 I
i Native Program State | Virtual Program State
! | A
I
liber.o i Serialization / Deserialization } N
T ; >
| [
J ‘ | v
| [
| I
! i a.dump
I
| I
| I
| I
| I
| I
| I
i I

Figure 2. System architecture of Wanco.

3.2 Checkpoint and Restore

We discussed two approaches for migrating WebAssembly
programs in Section 2.3. Among these, we adopt the second
approach, which modifies WebAssembly runtimes to instru-
ment machine code during AOT compilation. This approach
is particularly suitable for AOT compilation scenarios, where
peak performance takes precedence over startup time, unlike
interpreter- or JIT-based execution models. In our approach,
the AOT compiler inserts two kinds of machine code: mi-
gration points and code to save and reconstruct the runtime
state.

Migration Points. Migration points are specific locations
in a program where execution can be paused and resumed.
The AOT compiler inserts them at the same locations as
garbage collection (GC) safepoints: the beginning of func-
tions and loop bodies, ensuring migration is possible even
in infinite loops.

The AOT compiler generates machine code at each mi-
gration point, as illustrated in Figure 4, to check whether a
checkpoint has been requested and, if so, to create a snap-
shot. Each migration point includes a conditional branch
that checks whether a checkpoint request has been triggered.
Since each migration point contains a conditional branch,
increasing the number of migration points leads to higher
performance overhead.

State Capture and Reconstruction. As we discussed in
section 2.3, in AOT compilation, programs are compiled to
register machines, requiring the ability to save the state dur-
ing native execution as abstract WebAssembly states (snap-
shots) and conversely restore native execution from them.

m===) OSR-entry (restore)
4= OSR-exit (checkpoint)

stackmap
@ba:/ @aot_bar
local[@] [rbp-8x10]
o stack[@] | rbx
=]
= —)
S @foo Y — @aot_foo
w0
)) .
@main C— @aot_main
WebAssembly state Native call stack

Figure 3. Checkpoint and Restore using OSR.

We propose an approach similar to on-stack replacement
(OSR). OSR is a technique that allows switching between
different execution modes during runtime, and we apply
OSR’s state transformation approach to our method. The key
difference between OSR and our approach is that while OSR
only transforms the state of the currently executing func-
tion, our method transforms the entire call stack (Figure 3).
In our approach, OSR-exit (deoptimization) and OSR-entry
(optimization) are performed for checkpoint and restoration,
respectively. Both approaches share the common implemen-
tation detail of using stackmaps. Stackmaps record the lo-
cations of local variables in memory or registers and are
emitted during AOT compilation.

3.3 Security Issues and Restoration Trampolines

To restore the execution of precompiled WebAssembly pro-
grams, the runtime must reconstruct the call stack at the

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

MPLR ’25, October 12-18, 2025, Singapore, Singapore

Raiki Tamura, Daisuke Kotani, Kazuyuki Shudo, and Yasuo Okabe

restore_point1:

if (state == CHECKPOINT) {
checkpoint();

}

Figure 4. Code instrumented at migration points.

point of resumption. One straightforward approach to en-
able this reconstruction, which is used by Popcorn, is to
allocate a memory region, write an image of the native call
stack converted from the snapshot, and then switch the ex-
ecution to use that native stack. Although this method is
functional, it presents security challenges.

Modern CPUs implement security features to ensure the
correctness of control flow. For example, Intel’s Control-Flow
Enforcement Technology (CET) [17] provides a mechanism
called the Shadow Stack (Figure 6), which tracks function
calls and verifies return addresses by comparing them be-
tween the call stack and the shadow stack. As a result, di-
rectly manipulating the native call stack can violate such
mechanisms, rendering this approach incompatible with
these security protections.

To address this issue, we introduce a new mechanism,
called restoration trampolines. A restoration trampoline is
inserted at the beginning of each function and dispatches
execution to the appropriate program point upon restoration.
Before jumping, it restores local variables and the value stack
associated with that function.

Each migration point is generated as machine code similar
to that illustrated in Figure 5. The runtime provides func-
tions to read from the snapshot the WebAssembly instruction
offset to jump to, as well as the local variables and value stack
values to restore. It calls the get_next_instruction_offset
API to obtain the WebAssembly program point to restore and
then jumps to the corresponding location within the function
based on this offset. Thus, if restoration targets a non-top
function frame in the call stack, the trampoline jumps to just
before the call instruction. Additionally, immediately before
the jump, it calls the get_next_local_value API to load
the values of local variables and the value stack.

4 Implementation

Wanco is forked from Wasker [26], a lightweight LLVM-
based WebAssembly compiler written in Rust. Wasker only
compiles WebAssembly modules to ELF object files and does
not provide other functionalities such as WASI and check-
point/restoration. For this reason, we do not include Wasker
in Table 2, since it cannot directly produce standalone ex-
ecutables for performance comparison. To fill this gap, we
implement these functionalities as a library in C++ and
link them to the compiled WebAssembly module. Currently,
Wanco supports compiling WebAssembly modules into exe-
cutables for Linux on ARMv8 and x86-64 architectures. We

if (state == RESTORE) {
offset = get_next_instruction_offset();
switch (offset) {
case OFFSET_ENTRY1:
locall = get_next_local_value();
goto restore_pointi;
case OFFSET_ENTRY2:
locall = get_next_local_value();
goto restore_point2;
default:
unreachable ();

Figure 5. Restoration trampoline.

Stack
Growth

Data

Current
Function

Return Address 1 Return Address 1

Data Return Address 2
Raise an
Return Address 2
e s exception T Shac'lgrv fStaCk
if comparison (Inaccessible from user)
Call Stack fails

Figure 6. Intel CET’s Shadow Stack.

plan to extend support to other platforms such as RISC-V
and FreeBSD in the future.

We target Linux and utilize the POSIX signal SIGUSR1
for checkpoint requests. Since POSIX signals are supported
across various operating systems, this approach ensures
portability when we extend support to platforms other than
Linux in the future. The runtime’s signal handler receives
these signals and updates the global variable state, which
represents the current execution or migration state and takes
one of the values: NORMAL, CHECKPOINT, or RESTORE.

4.1 Lowering WebAssembly to LLVM IR

We use LLVM as the compiler backend, and the AOT com-
piler translates WebAssembly modules into LLVM IR. First,
WebAssembly functions are translated into LLVM functions.
Since the types of values on the WebAssembly value stack
at any program point can be determined at compile time,
values on the value stack can be mapped to LLVM regis-
ters. WebAssembly global variables and function tables are
translated into LLVM global variables. Function tables are
represented as arrays of pointers to the translated functions.
Linear memories are represented by LLVM global variables

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

Bringing Together Cross-ISA Checkpoint/Restoration and AOT Compilation of WebAssembly PrograM®LR ’25, October 12-18, 2025, Singapore, Singapore

of pointer type and allocated at application startup. The spe-
cial WebAssembly instruction memory . grow, which extends
linear memory, is translated into a call to a native runtime
library function that reallocates the memory if necessary.

Local variables are initially lowered using LLVM’s alloca
instruction, but because all WebAssembly locals are primitive
types, LLVM’s mem2reg pass usually promotes them to SSA
registers. Thus, in optimized code, locals typically reside in
registers and benefit from register allocation.

4.2 Migration Points and Compiler Optimizations

At each migration point, the runtime must be able to deter-
mine the WebAssembly instruction offset within the function.
To maintain a consistent mapping between this offset and
the underlying native execution state, compiler optimiza-
tions are constrained: instructions cannot be moved across
migration points. In effect, these points serve as barriers to
code motion, ensuring that the state observed at a migration
point matches a well-defined position in the WebAssembly
program.

Such barriers restrict optimizations like common subex-
pression elimination and loop-invariant code motion, which
would otherwise move instructions beyond their original
basic block. They also raise register pressure, since all live
values on the WebAssembly stack must be preserved at mi-
gration points, sometimes introducing additional ¢ nodes
or spills. These constraints apply only at migration points;
between them LLVM can still perform its usual aggressive
optimizations.

4.3 Multi-Architecture Support

Our implementation currently supports both x86_64 and
ARMv8 architectures. Thanks to LLVM, most parts of the
compiler and runtime required minimal modification to sup-
port multiple architectures. The backend code generation,
IR lowering, and platform-specific optimizations are largely
handled by LLVM itself.

However, certain low-level components still require ISA-
specific handling. In particular, operations related to call
stack unwinding and register preservation during migration
must be implemented separately for each CPU architecture.
These components are sensitive to calling conventions and
the structure of the execution context, which vary across
platforms. For each target architecture, we implemented
approximately 200 lines of C++ and assembly code to han-
dle these tasks. These implementations are modularized to
ensure extensibility when adding support for additional ar-
chitectures in the future.

Migration points are inserted at identical program loca-
tions across all ISAs. Therefore, the AOT compiler only needs
to generate the code for saving and reconstructing the run-
time state for its own architecture, without emitting target-
specific code for other ISAs.

5 Evaluation

Instrumenting machine code during AOT compilation intro-
duces both time and space overhead. Performance overhead
arises from migration points and restoration trampolines,
which are inserted at function entries and loop bodies. Since
both contain conditional branches to check for checkpoint or
restoration requests, they cause overhead even when check-
point or restoration does not actually occur. Checkpoint and
restoration themselves also incur costs. To create a check-
point, the runtime converts the native call stack into a virtual
call stack, serializes it, and writes it to a file. During restora-
tion, the runtime reads the snapshot and reconstructs the
call stack.

We evaluated our method using the benchmark programs
listed in Table 4. We measured execution time, checkpoint
and restoration time, and snapshot size to evaluate down-
time, which includes the network transfer time of snapshots.
Furthermore, we also measured code sizes because edge and
embedded systems have limited memory and require distribu-
tion of AOT-compiled programs over networks. llama2.c [19]
is a program that can run inference for a Large Language
Model (LLM). We used the stories260K model from tinylla-
mas [20]. The Computer Language Benchmark Games [14]
includes a set of very simple algorithmic problems. We used
nbody, binary-trees, and mandelbrot from it. The GAP
benchmark suite [10] contains a set of graph algorithms,
from which we used bc, bfs, cc, cc_sv, pr, pr_spmv, and
sssp. Note that tc crashed during checkpoint restoration
and was excluded from the evaluation. For our evaluation, we
used a synthetic Kronecker graph consisting of 2'® vertices.
All evaluations were performed on the testbed described in
Table 3, with each program run ten times.

5.1 Execution Time

We measured the execution time for each benchmark pro-
gram and compared normal AOT compilation with AOT
compilation with the checkpoint/restoration feature enabled.
Additionally, we evaluated the performance of our AOT com-
piler against existing WebAssembly runtimes, WebAssembly
Micro Runtime (WAMR) AOT [4] and WasmEdge AOT [3],
to assess its competitiveness.

Figure 7 shows the ratio of execution time with the check-
point/restoration (C/R) feature enabled to that without C/R
for our AOT compiler. The performance overhead introduced
by the C/R mechanism varies across different benchmarks.
Execution time ratios (with C/R vs. without C/R) range
from 0.89 to 1.82. The nbody benchmark showed a slight
performance improvement with a ratio of 0.89, while the
binary-trees benchmark experienced the highest overhead
with a ratio of 1.82. On average, the performance overhead
was approximately 36 %.

The execution time ratios of executables compiled with
our compiler relative to those with WasmEdge ranged from

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

MPLR ’25, October 12-18, 2025, Singapore, Singapore

0.93 to 1.14, while those relative to WAMR ranged from
0.92 to 1.10. These results indicate that our AOT compiler
achieves comparable performance to established WebAssem-
bly runtimes.

5.2 Checkpoint and Restoration Time

We compared the time required for checkpoint and restora-
tion operations in Wanco with those of CRIU. Checkpoint
was performed at the halfway point of the average execution
time, which was measured in advance. Figures 8 and 9 show
the snapshot size and the migration time for Wanco and
CRIU, respectively.

The checkpoint time varied significantly across programs.
Wanco reduced checkpoint time by 0 % to 80.5 % compared
to CRIU. The most significant improvement was observed in
the nbody benchmark, where Wanco achieved a checkpoint
time of 1.03 ms compared to CRIU’s 5.28 ms. The restoration
time also showed wide variation across benchmarks. In some
cases, Wanco restored programs faster than CRIU, while in
others it was slower. The restoration time of Wanco ranged
from 0.54 to 41.96 times that of CRIU. The most significant
improvement was observed in the fannkuch-redux bench-
mark, where Wanco restored the process in just 0.10 ms
compared to CRIU’s 4.00 ms. On the other hand, the high-
est overhead occurred in the pr benchmark, where Wanco’s
restoration time was 26.69 ms, whereas CRIU completed the
same task in 14.37 ms.

5.3 Snapshot Size

Figure 8 shows that Wanco consistently produced smaller
snapshots than CRIU, with size ratios ranging from 1.06 to
25.35. The most significant reduction was observed in the
fannkuch-redux benchmark, where Wanco’s snapshot size
was only 128.3 KiB compared to CRIU’s 3.18 MiB. Even in the
worst case, cc, Wanco reduced the snapshot size to 68.13 MiB,
which is 5.3 % smaller than the 71.95 MiB produced by CRIU.

This substantial reduction in snapshot size likely stems
from Wanco’s more precise state capture mechanism. While
CRIU operates at the process level and captures the entire
process memory space, including unused regions and run-
time overhead, Wanco’s WebAssembly-based approach cap-
tures only the essential application state required for restora-
tion, which reduces unnecessary data inclusion.

5.4 Code Size

Figure 10 illustrates the code size comparison across 12
benchmark programs. We compare the code sizes of binaries
generated by Wanco with those generated by WAMR and
WasmEdge.

Our results show that WAMR produces binaries that are on
average 69 % smaller than those generated by Wanco without
C/R, with size ratios ranging from 0.28 (for fannkuch-redux)
to 0.34 (for 11ama2.c). In contrast, WasmEdge generates
binaries that are on average 45 % larger than Wanco without

Raiki Tamura, Daisuke Kotani, Kazuyuki Shudo, and Yasuo Okabe

Table 3. Testbed Specifications.

Component Specification

CPU Intel Core i7-14700F
oS Ubuntu 24.04.2 LTS
RAM 32 GB

C/R, with size ratios varying from 1.05 (for 11ama2.c) to
1.78 (for bf's). This indicates that the binary size of Wanco
without C/R is comparable to those produced by existing
WebAssembly runtimes.

Enabling C/R functionality in Wanco increases the code
size by 116 % on average compared to the non-C/R ver-
sion, with size ratios ranging from 1.99 (for pr) to 2.47 (for
1lama2.c). The most significant increase occurs when Wanco
is combined with the Asyncify transformation, which instru-
ments Wasm code to support stack unwinding and rewinding,.
Because Asyncify is required in approaches that implement
checkpoint/restoration purely at the compiler level with-
out modifying the runtime, the resulting binaries are on
average 4.49 times larger than the standard Wanco. This
ratio varies from 4.17 (for fannkuch-redux) to 4.68 (for
1lama?2.c). While substantial, this increase is expected be-
cause the Asyncify transformation extensively instruments
the code to enable state capture and restoration at the We-
bAssembly bytecode level.

These results demonstrate that Wanco with C/R strikes
a practical balance between functionality and code size ef-
ficiency. It provides full checkpoint/restoration capabilities
with a code size comparable to standard WebAssembly run-
times such as WasmEdge, while remaining significantly more
compact than Asyncify-based solutions offering similar func-
tionality.

6 Related Work

This section introduces related research on checkpoint and
restoration of programs. Some of the works introduced in
Sections 1 and 2 are also relevant here and are briefly revis-
ited for comparison.

CRIU [2] is a process migration tool for Linux that en-
ables freezing running Linux containers or applications and
preserving them as snapshot files. These snapshots can be
transferred to another Linux machine and restored, allow-
ing applications to resume execution from their frozen state.
CRIU has been integrated with container virtualization tools
such as Docker [22], becoming the de facto standard for
process migration in Linux environments.

Beyond process-level migration tools like CRIU, other
approaches leverage compiler-level representations. For ex-
ample, Barbalace et al. [9] propose Popcorn Linux, a system

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

Bringing Together Cross-ISA Checkpoint/Restoration and AOT Compilation of WebAssembly PrograM®LR ’25, October 12-18, 2025, Singapore, Singapore

2001 mmm Wanco w/ C/R
- WAMR

B WasmEdge

1.754

Ratio of Execution Time to Wanco wo/ C/R

(QQ
&

Figure 7. Execution time normalized to Wanco without C/R.

1201 mmm wanco mmm Wanco Checkpoint .
1 mw CRIU 80 Wanco Restore
g0 7 %] mmm CRIU Checkpoint
z 5 E CRIU Restore x : L
) 2 60
N £
2 60 =
o
2 S 40
Q o
] 40 =)
0 =
20 20
o= 0
&S «
Q' Q'
N \bed S NS
S N
&
Figure 8. Snapshot size of Wanco and CRIU. Figure 9. Migration time of Wanco and CRIU.
B Wanco

g | W= Wanco w/ C/R
. Wanco w/ asyncify
s WAMR
B WasmEdge

Code size [MiB]

0
[) % 3 X o & 19 N $ J Q
S & N QIS & < S < &
& L LS & s 4
N ,bd \\é\ ,b{\b Q</
o &<
&

Figure 10. Comparison of code size.

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

MPLR ’25, October 12-18, 2025, Singapore, Singapore

Table 4. Benchmark Programs.

Benchmark Program Arguments

llama2.c [19] 1llama2.c model.bin -n @ -s 42
nbody 10000000
binary-trees 18

CLBG [14] fannkuch-redux 11
mandelbrot 1000
bc -g 18 -n 1
bfs -g 18 -n 1
cc -g 18 -n 1

GAPBS [10] cc_sv -g 18 -n 1
pr -g 18 -n 1
pr_spmv -g 18 -n 1
Sssp -g 18 -n 1
tc -g 18 -n 1

that utilizes LLVM IR, a compiler intermediate representa-
tion, for Linux process migration. Their approach enables
transformation of call stack states across disparate ISAs, fa-
cilitating seamless migration in heterogeneous computing
environments. However, their design targets Linux exclu-
sively, limiting its portability to other operating systems.

Other studies focus on language virtual machines. Suezawa [25]
and Shudo [24] independently proposed migration capabili-
ties for the interpreter in the Sun Java Virtual Machine (JVM).
Suezawa modified the interpreter, while Shudo implemented
it as a plug-in to the JVM. Similarly, Agbaria et al. [6] modi-
fied the interpreter in the OCaml virtual machine to enable
live migration. For WebAssembly, Nurul-Hoque et al. [23]
and Fujii et al. [11] independently conducted related research,
modifying WebAssembly interpreters to support migration.

Binaryen [1] is an open-source WebAssembly optimizer
comprising multiple passes that improve code size and execu-
tion speed by transforming WebAssembly code. Its Asyncify
pass instruments WebAssembly bytecode to enable paus-
ing and resuming program execution by explicitly unwind-
ing and rewinding the call stack. This technique supports
asynchronous programming and facilitates state capture and
restoration at the WebAssembly bytecode level.

7 Conclusion

In this study, we developed a WebAssembly AOT compiler
and proposed implementation techniques for language vir-
tual machines with checkpoint and restoration support. Our
method utilizes the interpreter’s state as a snapshot and con-
verts the optimized code state into the interpreter’s state
when checkpoint or restoration is performed, by instrument-
ing machine code during AOT compilation. Although our
approach incurs a 36 % execution time overhead on aver-
age, it achieves a significantly smaller code size compared to

Raiki Tamura, Daisuke Kotani, Kazuyuki Shudo, and Yasuo Okabe

bytecode-level instrumentation such as Asyncify. Moreover,
it provides practical migration performance with shorter
downtime than CRIU, making it suitable for real-world use
cases.

However, there are remaining challenges, such as the in-
ability to save and restore external runtime states, including
network and filesystem states.

References

[1] WebAssembly [n.d.]. Binaryen. WebAssembly. Retrieved April 26,
2025 from https://github.com/WebAssembly/binaryen

[2] CRIU [n.d.]. CRIU Wiki. CRIU. Retrieved November 21, 2024 from

https://criu.org/Main_Page

[3] WasmEdge 2019. WasmEdge. WasmEdge. Retrieved May 13, 2025

from https://github.com/WasmEdge/WasmEdge

[4] Bytecode Alliance 2019. WebAssembly Micro Runtime. Byte-

code Alliance. Retrieved May 13, 2025 from https://github.com/
bytecodealliance/wasm-micro-runtime
[5] WebAssembly 2019. WebAssembly System Interface. WebAssembly.
Retrieved June 3, 2025 from https://github.com/WebAssembly/WASI

[6] A. Agbaria and R. Friedman. 2002. Virtual machine based heteroge-
neous checkpointing. In Proceedings of the 16th International Parallel
and Distributed Processing Symposium (IPDPS).

[7] Bytecode Alliance. [n.d.]. wasmtime. Bytecode Alliance. Retrieved

June 6, 2025 from https://github.com/bytecodealliance/wasmtime

[8] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony

Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017.

Breaking the Boundaries in Heterogeneous-ISA Datacenters. In Pro-

ceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS).

645-659.

Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-

nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and

Binoy Ravindran. 2015. Popcorn: bridging the programmability gap

in heterogeneous-ISA platforms. In Proceedings of the Tenth European

Conference on Computer Systems (EuroSys).

[10] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP
benchmark suite. arXiv preprint arXiv:1508.03619 (2015).

[11] Daigo Fujii, Katsuya Matsubara, and Yuki Nakata. 2024. Stateful VM
Migration Among Heterogeneous WebAssembly Runtimes for Effi-
cient Edge-cloud Collaborations. In Proceedings of the 7th International
Workshop on Edge Systems, Analytics and Networking (EdgeSys). 19-24.

[12] Luca Gherardi, Davide Brugali, and Daniele Comotti. 2012. A java vs.
c++ performance evaluation: a 3d modeling benchmark. In Proceedings
of the Third International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR). 161-172.

[13] James Gosling. 2000. The Java language specification. Addison-Wesley
Professional.

[14] Isaac Gouy. [n.d.]. The Computer Language Benchmarks Game. Re-
trieved May 3, 2025 from https://benchmarksgame-team.pages.debian.
net/benchmarksgame/

[15] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 185-200.

[16] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde.
2010. C# Programming language. Addison-Wesley Professional.

[17] Intel. 2025. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Order Number: 325462-087US.

[18] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha.
2019. Not So Fast: Analyzing the Performance of WebAssembly vs.

—
O
—

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

https://github.com/WebAssembly/binaryen
https://criu.org/Main_Page
https://github.com/WasmEdge/WasmEdge
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/WebAssembly/WASI
https://github.com/bytecodealliance/wasmtime
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Bringing Together Cross-ISA Checkpoint/Restoration and AOT Compilation of WebAssembly PrograM®LR ’25, October 12-18, 2025, Singapore, Singapore

Native Code. In 2019 USENIX Annual Technical Conference (USENLX
ATC). 107-120.
[19] Andrej Karpathy. 2023. llama2.c. Retrieved October 12, 2024May 3,
2025 from https://github.com/karpathy/llama2.c
[20] Andrej Karpathy. 2023. tinyllamas. Retrieved May 2, 2025 from
https://huggingface.co/karpathy/tinyllamas
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization
(CGO). 75.
[22] Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent
development and deployment. Linux 7. 2014, 239 (2014).
[23] Mohammed Nurul-Hoque and Khaled A. Harras. 2021. Nomad: Cross-
Platform Computational Offloading and Migration in Femtoclouds
Using WebAssembly. In Proceedings of the 2021 IEEE International
Conference on Cloud Engineering (IC2E). 168-178.
Kazuyuki Shudo and Yoichi Muraoka. 2001. Asynchronous migration
of execution context in Java Virtual Machines. Future Generation

[21

—

[24

=

Computer Systems 18, 2 (2001), 225-233.

[25] Takashi Suezawa. 2000. Persistent execution state of a Java virtual
machine. In Proceedings of the ACM 2000 Conference on Java Grande.
160-167.

[26] Soichiro Ueda, Ai Nozaki, Daisuke Kotani, and Yasuo Okabe. 2024.
Mewz: Lightweight Execution Environment for WebAssembly with
High Isolation and Portability using Unikernels.

[27] W3C. [n.d.]. WebAssembly Core Specification.

[28] Wasm3. [n.d.]. Wasm3. Wasm3. Retrieved June 6, 2025 from https:
//github.com/wasm3/wasm3

[29] Wasmer. [n.d.]. wasmer. Wasmer. Retrieved June 6, 2025 from
https://github.com/wasmerio/wasmer

[30] WAVM. [n.d.]. WAVM. WAVM. Retrieved June 6, 2025 from https:
//github.com/WAVM/WAVM

[31] Alon Zakai. 2019. Pause and Resume WebAssembly with Bina-
ryen's Asyncify. WebAssembly. Retrieved May 27, 2025 from
https://kripken.github.io/blog/wasm/2019/07/16/asyncify.html

Received 2025-06-20; accepted 2025-07-28

Proc. 22nd Int'l Conf. on Managed Programming Languages
& Runtimes (MPLR 2025), October 2025

https://github.com/karpathy/llama2.c
https://huggingface.co/karpathy/tinyllamas
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3
https://github.com/wasmerio/wasmer
https://github.com/WAVM/WAVM
https://github.com/WAVM/WAVM
https://kripken.github.io/blog/wasm/2019/07/16/asyncify.html

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Language Virtual Machines and Migratability
	2.3 Checkpoint and Restore WebAssembly Runtimes

	3 Design
	3.1 Snapshots
	3.2 Checkpoint and Restore
	3.3 Security Issues and Restoration Trampolines

	4 Implementation
	4.1 Lowering WebAssembly to LLVM IR
	4.2 Migration Points and Compiler Optimizations
	4.3 Multi-Architecture Support

	5 Evaluation
	5.1 Execution Time
	5.2 Checkpoint and Restoration Time
	5.3 Snapshot Size
	5.4 Code Size

	6 Related Work
	7 Conclusion
	References

