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Abstract—Mining fairness in blockchain is a crucial factor that
affects the sustainability and motivation of proof-of-work calcu-
lations. If fairness declines, rational miners may be discouraged
from participating, leading to reduced computational resources in
the network. At the same time, blockchain transaction processing
capacity is in a dilemma with mining fairness, making a deep
understanding of these relationships essential for maintaining a
highly available and well-functioning network.

This study models mining as a game and analyzes how
rational miners’ strategies impact network-wide mining fairness
using game theory. Miners adjust their hash rate to maximize
rewards, sometimes adopting extreme strategies like committing
all resources or exiting entirely. A large-scale simulation extends
this model to more complex network structures, where miners
stochastically refine their strategies based on their own and oth-
ers’ gains. The findings show that mining fairness is influenced by
network topology, transaction throughput, and decentralization
indicators such as hash rate bias and network sparsity. Notably,
a denser network leads to fairer mining outcomes.

By integrating prior quantitative fairness evaluations with
game theory and network analysis, this study enables a more
detailed and comprehensive understanding of mining fairness,
offering valuable insights for blockchain design and optimization.

I. INTRODUCTION

Blockchain is a technology that maintains a ledger among
network participants in a decentralized manner, verifies and
approves transactions throughout the network to ensure their
legitimacy. Mining plays an important role for maintaining
security and reliability of a blockchain.

The core of mining is a mechanism called Proof of Work,
which verifies and agrees on transactions through a large
number of calculations. Participants, called miners, compete
to solve a mathematical problem by using their advanced
computing power to perform an enormous amount of hash
calculations. The first miner to solve the problem is entitled to
generate a new block and approve the transactions contained
in that block. Once a new block is generated, it is shared
throughout the network and verified by other nodes.

Miners who solve the problem are rewarded with cryp-
tocurrency. This reward consists of newly generated coins
and transaction fees within the block. In this way, miners are
incentivized to contribute to the network while at the same
time being supplied with new currency.

Blockchain, however, has been proposed with the concept
of mining fairness, a concept that undermines the fundamental
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mechanism of this technology. Ideally, blockchains aim to
have all blocks in a single chain, in which all miners are
rewarded according to the computational resources they have
invested. In reality, however, factors such as network delays
and attacks by malicious participants can cause forking, where
multiple blocks are created at the same time and the chain
splits [1]–[4]. When a fork occurs, each participant mines the
block that it believes will become the main chain, but not all
blocks are incorporated into the main chain. However, only the
blocks in the main chain are rewarded when mining succeeds,
resulting in the generation of computational resources that
are not rewarded even though they have been invested. The
equality of the computational resources and the obtained block
rewards is mining fairness, and the degradation of mining
fairness refers to the discrepancy between the computational
resources invested and the generated rewards.

This situation leads to the departure of miners with low
expected profit margins and, conversely, to the concentration of
rewards on miners with high profit margins, thus undermining
the decentralized nature of the chain. Therefore, a decrease in
mining fairness is a situation that should be avoided for the
sound operation of the system. On the other hand, it is known
that increasing the transaction processing capacity of a chain
increases the forking rate of the chain [5], [6], which leads to
a decrease in mining fairness. Therefore, these characteristics
are in a dilemma and cannot be reconciled.

As mentioned above, the relationship between mining fair-
ness and transaction processing capacity is an important
indicator for chain characterization and has attracted much
attention [7]–[10]. Therefore, in this study, we model these
relationships as a game of miners who change the amount of
computational resources they invest as a strategy, and aim to
understand how these characteristics interact in a real chain.

II. RELATED WORK

Mining fairness refers to the equality between the com-
putational resources invested and the rewards obtained. Our
previous study [11] proposed a method for quantifying it. In
this study, mining fairness is expressed in terms of several
quantitative indices, and the calculation method for mining
fairness in this study follows the indices of the previous study.

First, this study adopts the local mining fairness index LF1

metric for quantitative assessment of mining fairness. The
LF1(i) represents the difference between the block reward
rate of minor i and the hash rate percentage of the network.
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Here, let round r be the time interval between the first
generation of a block of height r and the first generation of a
block of height r+1, and let f the probability that j forks when
round r begins with the generation of a block of minor i and
minor j generates a block. Furthermore, let T be the average
block generation interval and d be the block propagation time
between minors.

According to this study, LF1 in the network with multiple
miners can be obtained as where V is the set of all the miners
and αi is the hash rate ratio of minor i in the whole network.
π in the following equation denotes the stationary distribution
of minors starting a round when enough time has elapsed. The
LF1 for node i is obtained as follows.

LF1(i) = π(i)(1−
∑
j∈V

αjFij +
∑
j∈V

αjFijWij)

+
∑
j∈V

π(j)αiFji(1−Wji)− αi

(1)

Here, the fork ratio Fij is obtained by using the block
propagation time Tij between nodes i and j and the average
block generation interval T as follows.

Fij = 1− e−
Tij
T (2)

Since Wij is determined by the chain conflict resolution
rule, we use the first-seen rule adopted in Bitcoin, i.e., each
miner mines the first block it receives. Let Pi,j,k denote the
probability that minor k mines minor i’s block when minor i
starts a round and minor j has a chain conflict, and Tij denote
the block propagation time from minor i to j, where Pi,j,k and
Wij are obtained as follows.

Pi,j,k =


1 if Tik < Tjk,
0 else if Tik < Tij + Tjk,

e−
Tik−Tjk

T −e−
Tij
T

1−e−
Tij
T

else.
(3)

Wij ≈
∑
k∈V

αkPi,j,k (4)

Furthermore, we introduce LF2 as an indicator of the profit
margin of each minor. The LF2 for node i is obtained as
follows. It is the gain of node i in game theoretic terms in
this study.

LF2(i) =
LF1(i)

αi
(5)

III. OUR APPROACH

In order to better understand the rational behavior of miners
in terms of mining fairness, We conducted a simulation of a
complex network with a large number of miners.

First, to start the simulation, we assume a network with
multiple random points in a unit square of length one, such
that the Euclidean distance between these nodes is the block
propagation time between each node.

Then, we create a network connecting these nodes as a rela-
tion of the target that these nodes imitate when updating their
strategies. The network connecting these nodes is created. In
this implementation, we used the Barabási-Albert model [12],
which is a typical model for generating scale-free networks.

Next, we assign a hash rate to each node as a strategy. As
the initial value, we take a random value following a normal
distribution.

Since π represents the stationary distribution of minors
starting a round after enough time has passed, it can be
obtained by repeating rounds until this distribution converges.
From the above, the value of LF1(i) is obtained, and LF2(i)
is also obtained by dividing it by αi, the hash rate ratio of
each node.

In this study, we applied a model called Pairwise Compari-
son [13] to update the strategy of each node in the simulator.
However, in this game, it is obvious that if we completely
imitate the strategy taken by the opponent, i.e., if we take the
exact same hash rate, all the nodes will immediately converge
to the same hash rate, and it is not suitable for the design of the
gain function in this game, where a larger gain is obtained by
taking a larger hash rate than that of the opponent. Therefore,
in this simulator, we will update the strategy by increasing the
hash rate by a certain amount if the hash rate of the imitator
is larger than our own, and by decreasing the hash rate by the
same amount if the hash rate is smaller.

More specifically, the strategy imitation probability p is
assumed to follow a Fermi distribution function following
the previous study [14][15][16], whose value is expressed as
follows.

p =
1

1 + eβ(uA−uB)
(6)

where the inverse temperature parameter β in the equation
represents the intensity of strategy update for each minor, and
takes non-negative values. The larger β is, the more p varies
with the difference of gains, and the smaller β is, the more
random the strategy updates are. When β = 0, each minor
updates its strategy with probability 1/2 regardless of its gain.
In this case, this value is set to 200, and the update range
of the strategy is set to 2% of the mean value of the normal
distribution given as the initial value.

To evaluate the mining fairness of the entire network, we
now introduce a global mining fairness index GF . It represents
the difference between the maximum and minimum values of
LF2 in the network.

The hash rate of each node is initialized according to a
normal distribution with mean 400,000 and standard deviation
100,000, and is assumed to be updated in the range of 8,000
when the strategy is updated.

Also, the number of nodes in the network is assumed to be
20 and the average degree is assumed to be 8.

IV. RESULTS

A. Simulation with fixed network topology

First, in order to evaluate the effect of the average block
generation interval on the network consisting of multiple
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Fig. 1. Average gain LF2 of nodes (∆
T

= 0.01)

Fig. 2. Average gain LF2 of nodes (∆
T

= 0.05)

Fig. 3. Average gain LF2 of nodes (∆
T

= 0.1)

Fig. 4. Mean of GF .

Fig. 5. Standard deviation of GF .

nodes, we fix the network topology and the coordinates of each
node, and then vary the average block generation interval to
evaluate the gain of each node and the global mining fairness
of the network.

The average block generation interval is the average distance
between each node, i.e., the average block propagation time,
as shown in equation 7, and three values: 100 times, 20 times,
and 10 times the average block generation interval. These
correspond to ∆

T = 0.01, 0.05, 0.1, respectively.

∆ =

√
2 + 2 + 5 ln(1 +

√
2)

15
≈ 0.521 (7)

For each of these values, we conducted 100 sets of trials,
each set consisting of 300 strategy updates.

For each of these values, 100 sets of trials were conducted,
each set consisting of 300 strategy updates. The final states
of the gains are averaged for each of them, and are shown in
Figures 1, 2 and 3.

From these results, we can see that the average block
generation interval affects the mining fairness of the entire
network. The smaller ∆

T is, the closer each node’s gain is
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TABLE I
PEARSON CORRELATION COEFFICIENT OF CENTRALITY INDEX AND GAIN

AT EACH AVERAGE BLOCK GENERATION INTERVAL

∆/T Degree Closeness Betweenness Eigenvector
0.01 0.12593 0.12885 0.14525 0.12395
0.05 0.11579 0.12221 0.13169 0.11508
0.1 0.11272 0.11323 0.12728 0.11391

TABLE II
PEARSON CORRELATION COEFFICIENT p VALUES OF CENTRALITY INDEX

AND GAIN AT EACH AVERAGE BLOCK GENERATION INTERVAL

∆/T Degree Closeness Betweenness Eigenvector
0.01 1.5967E-08 7.3401E-09 6.7385E-11 2.6805E-08
0.05 2.0721E-07 4.1917E-08 3.3888E-09 2.4630E-07
0.1 4.3318E-07 3.8375E-07 1.1168E-08 3.2635E-07

to zero, which indicates that the entire network is moving
toward a more fair direction. Here, a decrease in ∆

T , i.e., an
increase in the average block generation interval T , indicates
a decrease in transaction processing power, and the results
obtained quantitatively show the dilemma relationship between
these characteristics.

In this regard, we will evaluate this point using the global
mining fairness GF . The time-series variation of the mean and
standard deviation of GF are shown in Figures 4 and 5.

As expected, the value of GF also decreases as the value
of ∆/T decreases. In addition, a similar trend is observed for
the standard deviation, and its effect is also observed for the
speed of convergence.

Next, Pearson’s correlation coefficient is calculated between
the network centrality and the final gain of each node in order
to measure the effect of network topology on the gain. The
network centrality indices introduced here are order centrality,
proximity centrality, vector centrality, and eigenvector central-
ity [17]–[19].

Tables I and II show the results. From these results, it could
not be shown that there is a significant positive correlation
between each centrality index and the gains in all cases.
However, it is found that the p values are sufficiently small
in all cases, and the correlation coefficients are consistently
around 0.12.

In conclusion, for this simulator, the effect of the network
topology on the gain of each node is not strong, and the effect
of the convergence of the mining fairness of the entire network
due to the change in the hash rate ratio caused by the strategy
update of each node is strongly shown.

B. Simulation of randomly generated networks

Next, in order to evaluate the impact of network topology on
mining fairness based on the results of the previous section,
we consider randomly generated network topologies. In the
simulations of the randomly generated network, the average
block generation intervals are set to be ∆

T = 0.01, 0.05, 0.1,
as in the previous simulation, and for each of these values,
100 sets of trials were conducted for each of these values,
with 300 strategy updates as one set.

Fig. 6. Mean of GF with a randomly generated network.

TABLE III
PEARSON CORRELATION COEFFICIENTS OF CENTRALITY INDICES AND
GAINS PER AVERAGE BLOCK GENERATION INTERVAL WITH RANDOMLY

GENERATED NETWORKS.

∆/T Degree Closeness Betweenness Eigenvector
0.01 -0.00539 -0.00971 -0.00136 -0.00707
0.05 -0.05016 -0.04923 -0.05328 -0.04246
0.1 -0.00065 0.00837 0.00583 0.00214

TABLE IV
PEARSON CORRELATION COEFFICIENT p VALUES OF CENTRALITY INDEX

AND GAIN PER AVERAGE BLOCK GENERATION INTERVAL WITH
RANDOMLY GENERATED NETWORKS.

∆/T Degree Closeness Betweenness Eigenvector
0.01 0.80950 0.66439 0.95152 0.75200
0.05 0.02488 0.02770 0.01717 0.05765
0.1 0.97686 0.70843 0.79430 0.92385

First, in checking the gains of multiple networks, we ob-
served that the gains of nodes located in the center of the
network tend to be higher, while the gains of nodes located
at the edges tend to be lower. This leads to the assumption
that there is a correlation between network centrality and node
gains.

The time-series variation of the mean of GF shown in
Figure 6 is different from that shown in Figure 4, which leads
to the assumption that the converged value of GF depends on
its network topology.

In order to verify these assumptions, we first evaluate the
correlation between each centrality index and gain as in the
previous section. In the tables III and IV, we show the Pearson
correlation coefficients and p values for each average block
generation interval, each centrality index and gain.

From the above results, either the p values are large and
above the significance level and no significant conclusion can
be obtained, or the correlation coefficients are very small and
no correlation can be obtained even if the p values are below
the significance level.

Next, as a property of the network as a whole, we evaluate
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Fig. 7. Converged value of GF and standard distance.

TABLE V
PEARSON CORRELATION COEFFICIENT AND pVALUE OF GF WITH

STANDARD DISTANCE PER ∆/T .

∆/T Corr p
0.01 0.51210 5.1523×10−8

0.05 0.29664 0.002728
0.1 0.34879 0.00037589

the relationship between the convergent value of GF and the
topology of the network. As a measure of network sparsity, we
adopt the standard distance, i.e., the standard deviation of the
distance from (0.5, 0.5), the center of gravity of the region.
Figure 7 shows the relationship between the convergence value
of GF and the standard distance.

In addition, the correlation between the standard distance
and GF for each ∆/T is shown in tableV.

The above results show that there is a significant positive
correlation between the standard distance and GF for all
average block generation intervals. This confirms that the
convergence of GF depends on the network topology, and
that the smaller the standard distance, i.e., the more dense and
decentralized the network is, the smaller the convergence value
of GF is.

V. CONCLUSION

We conducted simulation to study the rational behavior
of miners in a game in which mining fairness is taken into
account in the gain, and the rational behavior of miners in a
game in which they aim to be rewarded efficiently.

As a result, while confirming that the dilemma between
transaction throughput and mining fairness holds even in
complex networks, we verify that the converged value of
GF depends on the network topology, and that a dense and
decentralized network with small centrality and hash rate bias,
small standard distance We have verified that a network with
small centrality and hash rate bias, small standard distance, and
dense decentralized network can construct a healthy network
that is fairer and converges more easily. When the bias of

centrality and hash rate is large, the variance of GF increases,
and the value of GF that converges increases for networks
with large delay among sparse nodes.

The expected next step is to conduct theoretical analyses
to support the results. Furthermore, as a future prospect, it
is possible that more significant results can be obtained by
using a distance weighted by hash rate instead of the standard
distance as a measure of the geographical closeness of the
network. In addition, in the actual blockchain, the difficulty of
calculation is always adjusted according to the total amount of
hashrate in the network, and reflecting this in the game may
provide a different perspective.
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