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Abstract—In a ridesharing service, driver-rider matching af-
fects the business in several ways. Not only does it cost money to
find a route on a map, but it also has an impact on the business
in terms of driver income and rider waiting times, and therefore
their satisfaction. It is not practical to field test the matching.
For example, an A/B test would take days. A simulator greatly
accelerates matching experiments. We modeled ridesharing and
developed a simulator based on it. The event-driven simulator en-
abled us to test matching algorithms with a variety of parameters
while utilizing routing systems, such as OSRM. Tested matching
techniques are back-to-back and reassignment, that determine
the matching targets. The simulations showed that back-to-back
reduced the average waiting time for riders by up to around 40%
and reassignment reduced it by up to around 15%. It is also the
contribution of this paper to show what ridesharing operators
are thinking about in order to technically optimize their business.

Index Terms—ridesharing, simulation, driver-rider matching

I. INTRODUCTION

Ridesharing is a service that matches drivers and riders via
smartphone applications. The service is available around the
world, and in 2024 we launched our services in Japan. In
ridesharing, matching drivers and riders is critical [1], [2], [3],
[4]. Efficient matching that reduces rider waiting times leads
to increased rider satisfaction, and if drivers can serve more
riders per unit time, their income is likely to increase. For
operators, matching algorithms with low computational cost,
e.g. for route search, help to reduce financial expenses.

It is not realistic to conduct experiments on matching
algorithms in the real service. Field testing takes significant
time and financial costs. For example, an A/B test takes
several days. In addition, field testing may impose undue
disadvantages on both drivers and riders. A simulator greatly
accelerates such experiments. We modeled ridesharing and
developed a simulator based on it. The simulator enabled
driver-rider matching experiments quickly and cost-effectively
without affecting our real services. Specifically, it allows us
to conduct experiments on matching algorithms with various
parameters, such as numbers, positions and their changes of
drivers and riders. Furthermore, by utilizing OSRM (Open
Source Routing Machine) [5], an open-source routing system,
the simulator achieves a realistic simulation.

The target techniques for simulation are back-to-back and
reassignment. Back-to-back (B2B) includes drivers who have
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already been matched a rider as matching candidates. Reas-
signment allows reassigning a rider who have already matched
to another driver. Simulations show that the B2B reduces the
average waiting time for riders by around 40%. From another
perspective, the same waiting time as with 35 drivers can be
achieved with only 20 drivers using the two algorithms.

The contribution of this paper includes the followings.

e A design of ridesharing simulator, that is capable of
experiments satisfying ridesharing operators’ needs.

e Techniques for driver-rider matching, back-to-back and
reassignment, that operators utilizes to technically opti-
mize their business.

e« How much the two techniques affect the interests of
drivers, riders and an operator. E.g. around 40% reduction
of waiting time for riders.

The following Section II and Section III describe our model
of ridesharing and simulator implemented along the model.
Section IV and Section V present the matching algorithms
and their evaluation. Section VI shows related work and
Section VII concludes the paper.
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Algorithm 1 Map

Algorithm 2 Rider

Require: travel time calculation function: f(x1,y1, 22, y2)
1: procedure MAP(f) > Constructor
self .f < f

: end procedure

time < self .f(x1,y1, 22, Y2)
return time

2
3
4:
5. function GET_TRAVEL_TIME(Z1, Y1, T2, Y2)
6
7
8: end function

II. A MODEL OF RIDESHARING

Our model of ridesharing to be implemented in the simulator
consists of Rider, Driver and Map as shown in Figure 1. The
simulator has a Matching Manager, that performs driver-rider
matching.

Riders and Drivers appear on the Map by being spawned
and disappear by being despawned along the given simulation
scenario. In the real world, a spawn and a despawn corre-
spond to the launch and the termination of the ridesharing
application. A Rider issues a ride request with its current
location and destination to the Matching Manager just after
it is spawned. A Driver sends a status update to the Matching
Manager periodically after it becomes available. The Matching
Manager manages Riders and Drivers, and performs driver-
rider matching at regular intervals. The Matching Manager
sends a matching notification to the Rider and a dispatch
request to the Driver when it dispatches the Rider to a Driver.

A. Map

Algorithm 1 defines the Map in our model. The Map
represents driver movement based on a external travel time
calculation function f. The function takes two points on
the map as arguments and returns the travel time. A simple
example of the function is the straight distance between the
two points divided by speed. The OSRM [5] based function is
available in the simulator though other routing systems, such
as Google Maps, can be supported. The function returns the
travel time along routes calculated by the OSRM.

B. Rider

Algorithm 2 and a state transition diagram shown in Fig-
ure 2 define the Rider. A Rider is initialized with four
parameters, spawn time ¢1, despawn time ¢5, spawn coordinate
(z1,y1) and destination coordinate (x3,y2). The initial state
is UNMATCHED.

When a Rider is spawned (line 8), it sends a ride request
message to the Matching Manager. Upon receiving a matching
notification (line 16), the Rider waits for the driver until it
arrives, and then rides to the destination. At despawn time
(line 12), the Rider sends a cancel request to the Matching
Manager if it has not been dispatched to a Driver. This means
that the Rider has given up boarding.

Require: spawn time: ¢;, despawn time: o, spawn coordinate:
(z1,y1), destination coordinate: (xs,ys)

: procedure RIDER(tl, to, 1,Y1, T2, yg)

self .spawn_time  t;

self .despawn_time <+ to

(self .spawn_z, self .spawn_y) = (x1,y1)

(self .destination_x, self .destination_y) = (22, y2)
end procedure

> Constructor

when self .spawn_time

Send ride_request (self.spawn_zx, self.spawn_y,
self .destination_x, self .destination_y) to Matching
Manager
10: end when

R AN A R ol

12: when self .despawn_time
13: Send cancel_request to Matching Manager
14: end when

16: when receiving matching notification d

17: Wait until Driver d arrives

18: Ride to coordinate
self .destination_y)

19: end when

(self .destination_x,

Picked up

Dropped off

Being
approached

Receive
matching notification

Fig. 2. State transition diagram of Rider.

C. Driver

Algorithm 3 and a state transition diagram shown in Fig-
ure 3 define the Driver. A Driver is initialized with three
parameters, spawn time t;, despawn time to and spawn
coordinate (z1,y). The initial state is DOWN.

When a Driver is spawned (line 8) along a simulation
scenario, it sends a status update up message to the Matching
Manager. When it receives a dispatch request (line 16), it
moves to the rider’s location (line 25) and picks up the rider
(line 26). Then, upon arriving at the destination (line 28), it
drops off the rider (line 29). A Driver notifies the Matching
Manager every time its state changes by sending status update

Proc. 29th Int'l Symposium on Distributed Simulation and
Real Time Applications (DS-RT 2025), September 2025



Algorithm 3 Driver

Require: spawn time: ¢;, despawn time: o, spawn coordinate:
(961, yl)

1: procedure DRIVER(%1,t2, 1, Y1) > Constructor
2 self .spawn_time < t;

3 self .despawn_time <+ to

4 (self .x, self .y) = (x1,91)

5: self .request_queue + ||
6
7
8
9

: end procedure

. when self .spawn_time
Send status_update_UP (self.x, self.y) to Matching
Manager
10: end when

12: when self .despawn_time
13: Send status_update_DOWN to Matching Manager
14: end when

15:

16: when receiving dispatch request r

17: if self.request_queue is empty then
18: self .drive(r)

19: else

20: Add r to self.request_queue

21: end if

22: end when

23:

24: procedure DRIVE(T)

25: Send status_update_ PICKUP to Matching Manager

26: Drive to coordinate (r.spawn_zx,r.spawn_y)

27: Pick up Rider r

28: Send status_update_IN_TRIP (r.spawn_z, r.spawn_y)
to Matching Manager

29: Drive to coordinate (r.destination_x, r.destination_y)

30: Drop off Rider r

31 if self.request_queue is empty then

32: Send status_update_UP (self .z, self.y) to Match-
ing Manager

33: else

34: self .drive(self .request_queue.dequeue())

35: end if

36: end procedure

37:

38: when receiving ride cancel r

39: Remove the Rider r from self.request_queue

40: end when

41:

42: loop

43: Send status_update_coordinate (self.z, self.y) to
Matching Manager

44: Sleep for a short time

45: end loop

Despawned
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Fig. 3. State transition diagram of Driver.

up, down, in_trip and coordinate messages (line 9, 13, 27, 31
and 42).

A Driver can keep multiple dispatch requests in its request
queue. A newly received dispatch request is added to the queue
(line 21) and processed in order. The maximum number of
requests that the queue holds is determined by the parameter
of back-to-back, that is a driver candidate selection algorithm
(Section IV-A).

D. Matching Manager

Algorithm 4 defines the Matching Manager. The Matching
Manager is initialized with a matching algorithm A and match-
ing interval d. It performs matching between rider candidates
and driver candidates based on the matching algorithm at every
matching interval (line 8).

The matching process is organized into two phases as
follows.

1) Selection of candidates for riders and drivers to be
matched. In Algorithm 4, the Matching Manager
performs the selection by updating the candidates,
rider_cands and driver_cands (line 18, 24, 28 and
35).

2) Assignment of rider candidates to driver candidates (line
14).

A matching algorithm A provides the two phases. This or-
ganization facilitates the construction of various algorithms.
Section IV describes what the current simulator implements
as a matching algorithm A.

The second phase is just an assignment problem to minimize
the sum of travel times. Algorithm 5 is the assignment process,
that a matching algorithm A provides. It calculates travel times
for all the pairs of the rider and driver candidates (line 7 to
15), and assigns the rider candidates to the driver candidates
(line 16). For the assignment, a greedy algorithm works up to
a moderate number of riders and drivers, and better algorithms
are available, for example, the Hungarian algorithm.

We have choices for the first phase. The simplest algorithm
selects only unmatched riders and drivers that have received
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Algorithm 4 Matching Manager

Require: matching algorithm: A, interval: d
1: procedure MATCHING_MANAGER(A, d) > Constructor

2: self .matching_algorithm < A

3: self interval < d

4 self .rider_cands + || > rider candidates
5: self .driver_cands + || > driver candidates
6: end procedure

7

8: loop

9: self .do_matching(self .rider_cands, self .driver_cands)
10: Sleep for self .interval

11: end loop

12:

13: procedure DO_MATCHING(rider_cands, driver_cands)

14: pairs — self .matching_algorithm.assign
(rider_cands, driver_cands)

15: for all (driver,rider) € pairs do

16: Send matching_notification(driver) to rider

17: Send dispatch_request(rider) to driver

18: Update self.rider_cands and self .driver_cands
using self .matching_algorithm

19: end for

20: end procedure

22: when upon receiving ride_request(xy, y1,22,y2) from
rider r

23: req < (r,21,91,T2,Y2)

24: Update self .rider_cands by adding req

25: end when

26:

27: when upon receiving cancel_request from rider r
28: Update self.rider_cands by removing r

29: if 7 was matched to driver d then

30: Send ride_cancel(r) to d

31: end if

32: end when

33:

34: when upon receiving status_update_* from driver d
35: Update self .driver_cands

self .matching_algorithm
36: end when

using

no dispatch request. The algorithms utilizing back-to-back
(Section IV-A) and reassignment (Section IV-B) select more
riders and drivers aggressively.

E. Limitations of the model

1) Single region: The current model above assumes a
ridesharing service at city scale and deals with the whole
service area as the single region. It is necessary to limit the
candidate riders and drivers based on their proximity to scale
the service to continental scale. Grid systems, such as Uber’s

Algorithm 5 Assignment of rider candidates to driver candi-
dates (line 14 of Algorithm 4)

Require: rider candidates selection algorithm: select_riders
(in matching algorithm A), driver candidates selection
algorithm: select_drivers (in A), travel time calculation
function f (in a Map),

Ensure: list of matched pairs (driver, rider)

1: rider_cands < get by select_riders

2: driver_cands < get by select_drivers

3: matched_pairs < assign(rider_cands, driver_cands)
4: return matched_pairs

S:

6: function ASSIGN(rider_cands, driver_cands)

7: cost_matrix «+ [len(rider_cands)|[len(driver_cands)]
8: for i in range (len(rider_cands)) do

9: for j in range (len(driver_cands)) do

10: r < rider_cands]i]

11 d «+ driver_cands[j]

12: travel_time « f(r.spawn_zx,r.spawn_y,d.z, d.y)
13: cost_matrix[i|[j] < travel_time

14: end for

15: end for

16: matched_pairs < pairs that minimize the sum of costs
17: return matched_pairs

18: end function

H3 [6], are available for the purpose, and our next steps include
such an extension of the model.

2) No refusal by driver: In the current model, a driver
automatically accepts all dispatch requests. In a real service,
a driver can refuse a dispatch request to accept an upcoming
better request or simply take a break. In the case of a small
number of drivers, a driver has many options and such a refusal
can worsen both rider and driver metrics such as rider waiting
time and driver ride time.

3) No carpooling: A driver can carry only one rider at
a moment. Depending the service, a user has the option of
occupancy or carpooling. Carpooling would increase the total
transport capacity and then may improve rider waiting time.
It is part of our next steps to consider carpooling.

III. SIMULATOR

Figure 4 shows the architecture of our simulator imple-
mented along the model described in Section II. The reason we
chose Java as the implementation language because of perfor-
mance and portability. After reading a simulation scenario, it
simulates the ridesharing service while using a routing system,
such as OSRM. Then it writes out a statistical output and a
simulation event log. The event log can be visualized with our
visualizer and kepler.gl [7], an open-source software.

The simulator is event-driven, not time-stepped. The
ridesharing simulation is an agent simulation and almost all
state changes in the simulator only occur at the agent’s events
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Fig. 4. Simulator architecture.

such as spawn, despawn, matching, pick up and drop off.
Therefore, event-driven simulation is more time-effective. For
this reason, number of simulators in various fields, such as
peer-to-peer [8], [9] and blockchain [10], [11], [12], have
adopted event-driven simulation.

The simulator accepts various rider and driver situations,
road situations and matching algorithms. An input scenario
describes the spawn time and other parameters of riders and
drivers. A simulation reflects road situation by calling the
travel function f given to the Map (Section II-A). We can
compare matching algorithms by changing the algorithm A
given to Matching manager (Section II-D).

A. Input: simulation scenario

A simulation scenario describes the behavior of all riders
and drivers. In a scenario, a single entry is about a rider
or a driver and includes spawn coordinate, spawn time and
despawn time. A rider entry includes its destination addition-
ally. Such a static scenario, not dynamically generated one,
facilitates reproduction and fine control of the rider and driver
situations.

There are several ways to prepare a scenario, including
handwriting, using a generator, and converting from a real
world trace. Our generator writes out a scenario along given
settings, number of riders and drivers, temporal and geographic
distribution of them and riders’ destinations. We also convert
our real world trace obtained in our service at Osaka city for
analyses.

B. Utilizing routing systems

The simulator utilizes OSRM (Open Source Routing Ma-
chine) [5] to determine driver travel times. It means using
OSRM as the travel function f given to the Map (Section
II-A). We first selected OSRM because it works on Open-
StreeMap that provides maps of extensive areas of the Earth.

OSRM is an open-source routing system implemented in
C++. It runs as a server and provides an API, that takes an
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Fig. 6. Visualization using kepler.gl.

origin and a destination on the map, and returns routes and
estimated travel times for the routes. We have two choices of
where to place the server, the same server as the simulator
or a different server from the simulator. There is a trade off.
Zero network latency can be achieved by placing on the same
server.

It is possible to utilize other map APIs, such as Google
Maps, with some engineering work. Moreover, it is even
possible not to use a routing system. The simulator provides a
travel function f not using a routing system (“NO OSRM” in
Section III-D), that returns the straight distance between the
two points divided by speed. Such a simple travel time estima-
tion is enough to compare matching algorithms relative to each
other. For this reason, we did not select microscopic traffic
simulators, such as SUMO (Simulation of Urban MObility)
[13]. Microscopic simulations are not necessary for comparing
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TABLE I
EXPERIMENTAL ENVIRONMENT FOR ALL THE EXPERIMENTS.

Processor 4 cores of Intel Xeon Platinum 8480+ (2.0 GHz)
Memory 16 GiB DDR5 SDRAM

4 cores and 16 GiB are secured by Slurm, a job scheduler.

The simulator and OSRM share the resources.

OS kernel Linux 4.18.0-553.44.1.e18_10
Java runtime  OpenJDK 8 (version 1.8.0_442)
OSRM Master branch as of October 24th, 2024

(After 5.27.1 and before 6.0RC1)

TABLE II
PARAMETERS FOR EXPERIMENTS ON EXECUTION TIME.

Matching algorithm
Candidate selection Only unmatched riders and drivers
(Reass. level None and B2B level 0)

Assignment Greedy algorithm
Matching interval 5 seconds
Travel time calc. function ~NO OSRM and OSRM
OSRM runs on the same server as the simulator.
Note that the followings are the same as Table IIIL.

Driver spawn time Simulation start time

194.8
200 1844 1855  184.6

175 163.8  162.6
150
125 —e— OSRM

100 NO OSRM
75

50

250 .0 10.0 94 11.6 98 115 104  10.8

Execution time (seconds)

0

10000 20000 30000 40000 50000 60000 70000 80000 90000
Simulated time (seconds)

Fig. 7. Execution time vs. simulated time.

Driver despawn
Rider spawn time
Rider despawn time
Map used by OSRM
Rider spawn position
Rider destination

None

Random

Random 0 ~ 1200 sec after spawn
Kyoto city, Japan

In a circle of radius 5 km

In a circle of radius 3 km

— 50Ff 18572
%)
g HEll OSRM
401
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centered at spawn position

matching algorithms.

C. Output: statistical output and event log

The simulator writes out a statistical output and a simulation
event log. The former is for analysis, and the latter is mainly
for visualization. The results shown in the evaluation of
matching algorithm (Section V) are based on the statistical
output.

There are two ways for visualization, our visualizer and
kepler.gl [7], an open-source software. Figure 5 shows a
captured image of our visualizer, and Figure 6 shows one
of kepler.gl. Visualization helps confirmation that a matching
algorithm is working properly, not only demonstration.

A simulator as software is evaluated by metrics such as
execution time and memory footprint.

The memory footprint increases with the size of the simu-
lation, i.e., the number of riders and driver. Both a Rider and
a Driver are Java objects. The size of data which an object
holds is at most a few dozen bytes. 1 GiB of memory can
hold 10 million objects, that is a enough large number for a
ridesharing service.

We measured the simulator’s execution times while varying
simulated time and number of riders and drivers. Table I de-
scribes the experimental environment for all the experiments.
Table II shows parameters for the measurement of execution
times. “OSRM” means the use of OSRM as the routing system
for the Map. “NO OSRM” means that OSRM is not used, and
a travel time is the straight distance between the two points
divided by speed.

Drivers: 1 Drivers: 5 Drivers: 10 Drivers: 15 Drivers: 20

Fig. 8. Execution time vs. number of riders and drivers.

D. Evaluation of the simulator

Figure 7 shows execution times for various simulated times
from 10800 to 86400 seconds, that is from 3 to 24 hours. The
number of riders and drivers is 1000 and 100 respectively. The
execution times without OSRM is around 10 seconds even
for 24 hours. The time does not increase linearly with the
simulated time. It is an advantage of event-driven simulation.
Using OSRM increased the execution time, but a single
simulation was completed in 200 seconds even for 24 hours.
The result also shows that OSRM calls, not the simulation
itself, dominate the execution times.

Figure 8 shows execution times for various numbers of
riders and drivers. The simulated time is 21600 seconds, that
is 6 hours. The execution time increased along the number of
riders and drivers. The increase is not exactly linear, but is is
not far from linear either.

In summary, the simulated time itself does not affect the
execution time because the simulator is event-driven. OSRM
calls dominates the execution time. OSRM is called once for
each pairs of riders and drivers in the assignment process
(Section II-D and Algorithm 5). The number of the OSRM
calls is then the product of the number of riders and drivers at
that time. Because of it, as the number of riders and drivers
increases, so does the execution time.

IV. MATCHING ALGORITHMS

A matching algorithm does its work in the two phases,
candidate selection and assignment (Section II-D). The cur-
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rent simulator implements back-to-back (Section IV-A) and
reassignment (Section IV-B) for the candidate selection, and
a greedy algorithm for the assignment.

A. Candidate driver selection

Back-to-back (B2B) determines how broad a range of
drivers are matching candidates. B2B allows a driver who has
already been matched with a rider to be matched with other
riders. Figure 9 shows our definition of B2B. In the level N
of B2B, a driver with N or fewer requests in its request queue
is treated as a matching candidate.

As shown in Figure 10, the benefit of B2B is that it reduces
the need to drive far to pick up a rider. It possibly reduces
waiting time for riders.

In the simulator, each driver can have its own level of
B2B. It is possible to apply B2B to part of the drivers as
experimented in Section V-B.

B. Candidate rider selection

Reassignment determines how broad a range of riders are
matching candidates. As shown in Figure 2, there five states
that a rider can be in (Section II-B). Not only UNMATCHED but
also MATCHED and WAITING states allows a rider to change
the driver of the match. A driver change in the MATCHED
and WAITING states means a change of the already matched
driver. It is not only a change but also a cancellation if a
driver is not assigned to the rider. It may cause the rider to
have doubts about the reason. It should be carefully carried
out and presented to the riders.

Reassignment level:
Any % Allows reassignment of

Limited already matched riders.
None <——>
Rider state : UNMATCHED MATCHED WAITING

QEINS Y

Fig. 11. Reassignment.

TABLE III
PARAMETERS FOR EXPERIMENTS OF MATCHING ALGORITHMS.

1000
21600 seconds = 6 hours

Number of riders
Simulation time
Matching algorithm
Candidate selection
Assignment
Matching interval 5 seconds
Travel time calc. function ~OSRM
OSRM runs on the same server as the simulator
Note that the followings are the same as Table II.
Driver spawn time Simulation start time
Driver despawn None
Rider spawn time Random
Rider despawn time Random 0 ~ 1200 sec after spawn
Map used by OSRM Kyoto city, Japan
Rider spawn position In a circle of radius 5 km
Rider destination In a circle of radius 3 km
centered at spawn position

Depends on the experiment
Greedy algorithm

w e
o O

Number of riders
_ N
o o

(=]

10000 15000
Time (seconds)

0 5000 20000

Fig. 12. Number of riders in the simulated 6 hours.

Figure 11 shows our definition of reassignment. There
are three levels, None, Limited and Any. The first level,
None, only treats riders in the UNMATCHED state as matching
candidates. The second level, Limited, treats riders in the
MATCHED state in addition. The maximum level, Any, treats
riders in the WAITING state as well.

V. EVALUATION OF MATCHING ALGORITHMS

We evaluate matching algorithms, that utilize different levels
of the back-to-back (B2B) and the reassignment. The metrics
of the evaluation are as follows.

1) Waiting time for riders

2) Total transport time for drivers

3) Number of travel time calculations

Waiting times have a direct impact on rider satisfaction. A
short waiting time also reduces riders’ cancellation, that is
shown as the number of despawn in a simulation. A matching
algorithm has the same effect as an additional driver input if
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Fig. 15. Number of travel time calculations.

it reduces cancellation. Of course, fewer cancellations would
simply increase income from the riders.

Total transport time influences driver income. Longer in the
working hours is basically better.

Travel time calculations increase operator’s expense if the
operator uses a paid service, such as Google Maps APL. A
high-quality routing service improves matching accuracy, but
its fee cannot be ignored.

Table III shows parameters for the following experiments.
The number of riders is 1000. A rider is spawned at a random
simulated time in the 6 hours and sends a ride request.
Figure 12 shows the number of riders that are present at a
given simulated time within the 6 hours. There are 15 to 40
riders are present for the most simulated time of a simulation.
The number of drivers is from 5 to 50 in increments of 5. The
experiments use OSRM.
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Fig. 16. Average number of candidate drivers.
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Fig. 17. Average number of candidate riders.

A. Impacts of B2B and reassignment

Experiments in this section measure the impact of B2B
and reassignment in the above three metrics. The experiments
target B2B levels 0 (no B2B) and 1, and all reassignment levels
None, Limited and Any. Note that the number of combinations
of B2B and reassignment levels is five, not six, which is two
times three, because reassignment levels Limited and Any are
the same for B2B level 0. Figure 13, 14 and 15 show the
results. In the figures, “B2B_None” means B2B level 0 and
“B2B_1"” means level 1. Blue lines show the results of B2B
level O, and red lines show B2B level 1.

Figure 13 shows the average waiting time for riders. The
more drivers, the shorter the waiting time naturally. The results
differ depending on the degree of crowding.

o In the crowded situation, i.e. the number of driver is 15 or
less, the level Any of reassignment shortened the waiting
times.

— Around 15% reduction in case of 15 drivers
¢ In the moderate situation, i.e. the number of driver is from
20 to 35, B2B shortened the waiting times significantly.
Note that the number of drivers is comparable with the
number of riders on the map shown in Figure 12.
— Around 40% reduction in case of 25 drivers
o In the vacant situation, i.e. the number of driver is 40 or
more, neither B2B nor reassignment affected much. B2B
affects a little.
We can compare the five combinations not only with the same
number of drivers (vertically) but also with the same waiting
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Fig. 19. Difference in total transport time between with and without B2B.

time (horizontally) on Figure 13. The waiting times with B2B
and 20 drivers is comparable with the waiting times with no
B2B and 30 or 35 drivers. The result shows that B2B had the
same impact as increasing the number of drivers from 20 to 30
or 35. In summary, in the moderately crowded situation, B2B
had much impacts in the waiting time. In the vacant situation,
reassignment had a little impacts.

Figure 14 shows the average total transport time for drivers.
Naturally, increasing the number of drivers reduced the total
transport times.

o In the crowded situation, the level Any of reassignment
increased the total transport time. B2B also had a little
impact.

¢ In the moderate situation, B2B increased the total trans-
port time.

o In the vacant situation, neither B2B nor reassignment
affected much.

Figure 15 shows the number of travel time calculations.
Reassignment increased the number of the calculation on its
own. B2B had no impact on its own, but has an impact when
combined with reassignment. Consistently, the level Any of
reassignment showed the largest number of the calculations.
Limited and None followed. It looks natural because the
reassignment increases the number of candidate riders.

Figures 16 and 17 show the average number of matching
candidates. Naturally, increasing the number of drivers in-
creased candidate drivers and decreased candidate riders. It
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Fig. 20. Average waiting time with the level infinity of B2B.
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Fig. 21. Number of travel time calculations with the level infinity of B2B.

is also natural that B2B increased candidate drivers as shown
in Figure 16, and reassignement increased candidate riders as
shown in Figure 17.

B. Fartial application of B2B

It is possible to apply B2B to part of the drivers as
mentioned in Section I'V-B. Figures 18 and 19 show the impact
of partially-applied B2B. The B2B rate in the figures is the
rate of drivers to whom B2B level 1 applies. The other drivers
are in B2B level 0 (no B2B). The level of reassignment is Any.

Figure 18 shows the average waiting time for riders. The
more drivers with B2B, the shorter the waiting time. The more
upper, the darker in the figure.

Figure 19 shows the difference in the total transport times
between drivers with B2B and those without. Driver with
B2B consistently had longer transport times. The less drivers,
the more crowded, the larger the difference. The more left,
the lighter in the figure. The result shows that a driver can
increases income by enabling B2B especially in a crowded
situation.

C. Higher levels of B2B

The maximum level of B2B experimented so far is 1. Here
we examine how higher levels of B2B affect the metrics.

Figures 20 and 21 show the results. In the figures,
“B2B_Inf” means B2B level infinity. The level of reassign-
ment is Any.

Figure 20 shows the average waiting time for riders. The
level infinity did not show more benefit over the level 1. The
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benefit of B2B is that it reduces long drives to pick up a rider
(Section IV-A). However back-to-back’ed riders must wait for
the preceding riders to finish. We observed here that the benefit
and the downside are already balanced with the level 1 of B2B.

Figure 21 shows the number of travel time calculations.
The level infinity visibly increased the number in the crowded
situation, i.e. the number of driver is 15 or less. Despite there
is no benefit.

VI. RELATED WORK

Ota et al. [14] proposed a ridesharing simulator capable
of large datasets and scenarios. Their goal is large-scale
simulation, and their matching algorithm simply performs all-
to-all matching based on shortest path lengths. In contrast, our
goal is to experiment various matching algorithms as shown
above. The evaluation of our simulator in Section III-D showed
that the scalability of our simulator is sufficient for a city
scale simulation. For larger scale, it is necessary to limit the
matching candidates using a grid systems as mentioned in
Section II-E1.

All the following related work utilizes a simulator to eval-
uate its proposal.

Lee et al. [15] proposed a driver assignment method based
on Dijkstra’s shortest path algorithm. In our simulator, OSRM
serves the role of computing the shortest path.

Febbraro et al. [2] formulated ridesharing matching and
demonstrated through simulation that rider waiting times can
be improved by solving an optimization problem. Our con-
tribution is a quantitative evaluation of matching candidate
selection algorithms, B2B and reassignment, performed prior
to optimization.

Maciejewski et al. [16] demonstrated the effectiveness of
reassigning ride requests via simulation. Our contribution
includes a comprehensive formulation of reassignment, and
its relationship with B2B.

Jung et al. [3] investigated how carpooling between riders
affects their waiting times. They compared a greedy method
that assigns based on the shortest assignment distance, a
method that minimizes the total travel time for riders, and a
method that minimizes the total travel cost for riders, showing
that the greedy method based on assignment distance results
in the shortest rider waiting time. Our goal was to evaluate
rider-driver matching algorithms prior to carpooling, that is
part of our future work.

Martinez et al. [17] and Azevedo et al. [18] showed that the
larger the number of drivers, the smaller the decrease in rider
waiting times when a certain number of drivers are added. It
is consistent with our results shown in Section V-A.

VII. SUMMARY

This paper presented our model of ridesharing and the
simulator developed based on the model. They satisfies the
needs of us, i.e. a ridesharing operator, for experiments on
matching algorithms.

We formulated techniques for rider-driver matching, back-
to-back and reassignment on the model. The formulation

enabled simulations. The simulation results showed that back-
to-back reduced the average waiting time of riders by up to
around 40% in the moderately crowded situation. Reassign-
ment reduced it by up to around 15% in the crowded situation.

We will check and ensure that the simulation results are
consistent with our real service. It is costly, as mentioned
in Section I, but possible by comparing the metrics before
and after the application of a technique such as back-to-back.
It is part of future work as well as breaking the limitations
described in Section II-E.

CODE AVAILABILITY

All source code we developed for this study is available at
https://github.com/shudolab/rideShareSim.
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