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Abstract—Decentralized learning has gained attention for over-
coming the disadvantage of centralized learning such as single
point of failure and scalability. However, when there are faulty
nodes or attackers (Byzantine nodes) in the network, and these
nodes perform Byzantine attacks by sending abnormal models,
the model may fail to converge. Existing defense methods against
Byzantine attacks have been pointed out to fail when facing
sophisticated attacks or an increasing proportion of Byzantine
nodes. To address these issues, we propose a novel defense method
based on loss function values. Each node calculates the loss
values of both its own model and the models of neighboring
nodes using its local data. If the difference between the two
loss values exceeds a certain threshold, the model is used for
aggregation. This defense method ensures that only models with
generalization performance above a certain level are included
in the aggregation process, effectively filtering out Byzantine
models as well as low-performing models from benign nodes.
Experimental results using the CIFAR-10 dataset demonstrate
that the proposed method achieves better convergence speed and
accuracy compared to existing methods, and it remains robust
even as the proportion of Byzantine nodes increases.

Index Terms—Decentralized Learning, Federated Learning,
Deep Learning

I. INTRODUCTION

Decentralized learning [1], [2] has gained attention as a
peer-to-peer (P2P) network-based distributed deep learning
approach that that overcomes the disadvantage of centralized
learning [3] such as single point of failure and scalability.
In decentralized learning, each node exchanges the models
learned on its local data with neighboring nodes and aggre-
gates the models, allowing for the construction of an accu-
rate model while preserving data privacy. According to prior
research, decentralized learning has been shown to perform
faster than federated learning in environments with limited
bandwidth or high network latency [4].

However, in decentralized environments, there may be
faulty nodes or Byzantine nodes executing malicious attacks.
Byzantine nodes hinder model convergence by transmitting
abnormal models to neighboring nodes. Attacks executed by
Byzantine nodes are broadly categorized into Data Poisoning
Attacks (DPA) and Model Poisoning Attacks (MPA) [5].
DPA involves attackers training a model using intentionally
manipulated datasets and transmitting a low-accuracy model
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to neighboring nodes. A representative attack is the label-
flipping attack [6], where the correct labels in the dataset are
swapped prior to training. In contrast, MPA involves attackers
directly adding noise to the model and sending the tampered
model to neighboring nodes. MPA is generally considered
more effective than DPA in obstructing model convergence [5].
A prominent example of MPA is the Max attack [7], where
the attacker inverts the maximum value in each dimension of
the model parameters from all benign nodes and transmits it
to neighboring nodes. More sophisticated attacks include “A
little is enough” [8] and “Fall of Empires” [9].

To counter such attacks, methods have been proposed
that filter out malicious actors or employ robust aggregation
techniques [8], [9]. However, existing methods have been
criticized for their inability to prevent sophisticated attacks
or for becoming ineffective as the proportion of Byzantine
nodes increases [5]. To address these issues, we propose a
novel filtering method based on loss function values. In our
approach, each node calculates the loss values of its own
model and the models of neighboring nodes using its local
data, and if the difference exceeds a certain threshold, the
model is adopted. In the early stages of training, when it is
difficult to distinguish between Byzantine and benign nodes,
setting a higher threshold allows for the adoption of only mod-
els with high generalization performance. Through simulation
experiments, we confirmed that the proposed method contin-
ues to function effectively even under sophisticated attacks
and increasing proportions of Byzantine nodes, outperforming
existing methods.

II. RELATED WORK

Filtering methods are divided into two categories: distance-
based and performance-based approaches. Distance-based
methods typically measure deviations in model parameters,
such as the Euclidean distance between the model parameters
of a given node and those of neighboring nodes, excluding
outliers. Blanchard et al. proposed Krum [10], a method that
selects a model from neighboring nodes whose parameter dis-
tances to other nodes are minimal, and uses it for aggregation.
However, this method becomes ineffective under sophisticated
attacks or when the proportion of Byzantine nodes increases.
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Performance-based methods, on the other hand, evaluate
the performance of neighboring models by measuring metrics
such as loss values or accuracy using the node’s local data,
excluding models with poor generalization performance. Xie
et al. proposed a method that scores models based on the
loss function values of neighboring nodes, and aggregates the
models with the lowest scores [11]. The problem with this
approach is that in the early stages of training, most models
exhibit uniformly high loss values or low accuracy, making it
difficult to distinguish between Byzantine and benign nodes,
which can lead to the inclusion of Byzantine models in the
aggregation.

There are also hybrid methods that combine distance-
based and performance-based approaches. Guo et al. proposed
UBAR [12], which employs two-stage filtering. In the first
stage, multiple nodes with model parameters close to the node’
s own parameters in terms of Euclidean distance are selected.
In the second stage, the loss values of the neighboring models
are evaluated using local data, and if a neighboring model has
a lower loss value than the node’s own model, that model is
adopted. If no model has a lower loss value, the model with
the smallest loss among the neighbors is selected. However,
this method has two major issues. First, the distance-based
filtering in the first stage cannot filter out sophisticated attacks,
allowing many adversarial models to remain. Second, from
the perspective of the neighboring nodes, the local data of
the node receiving the models is unknown test data. Since
the receiving node has been trained on that dataset, its model
generally achieves high generalization performance on that
data, making it rare for the loss value of neighboring models
to be lower than the receiving node’s model. As a result,
adversarial models that pass through the first-stage filtering
may be selected for aggregation, increasing the risk of attack.

In summary, distance-based methods fail under sophisti-
cated attacks or when the proportion of Byzantine nodes
increases, while performance-based methods face difficulties
distinguishing between benign and Byzantine models during
the early stages of training. Furthermore, as previous studies
have shown, these methods do not utilize past gradient infor-
mation, leading to issues with convergence [13]. Considering
these challenges, a method that does not rely on distance-based
filtering, overcomes the difficulty of distinguishing Byzantine
nodes in the early stages of performance-based learning, and
guarantees convergence through the use of historical informa-
tion is needed.

III. PROBLEM FORMULATION

A. Network

The network is represented as an undirected graph con-
sisting of n nodes, denoted as G = (V,E). Here, V =
{1, 2, . . . , n} represents the set of node vertices. E is the set of
edges, and if (i, j) ∈ E, then i and j are connected. Let Ni be
the set of neighboring nodes of node i. Also, let N̄i = Ni∪{i}.
Assume that some nodes do not follow the protocol and send
arbitrary messages, referred to as Byzantine nodes. Let H be
the set of benign nodes and B be the set of Byzantine nodes.

B. Optimization Problem

The goal of the benign nodes in the network is to solve the
following optimization problem:

min
x∈Rd

f(x) :=
1

H

∑
i∈H

{fi(x) := Eξi∼Di
Fi(x; ξi)} , (1)

Let x ∈ Rd represent the model parameters, where fi is the
local objective function of benign node i, and Fi(x; ξi) denotes
the loss function for the model parameter x, with ξi being a
random data sample drawn from the distribution Di. To solve
this optimization problem, each node repeats the following
three steps:

1) Local update
The gradient gti = ∇Fi(x

t
i; ξ

t) is computed using a
mini-batch. Then, the model is updated as follows:

x
t+1/2
i = xt

i − ηgti (2)

2) Model exchange
3) Aggregation

xt+1
i =

∑
j∈N̄i

Wijx
t+1/2
j (3)

Here, Wij is the mixing weight matrix, and if i ̸= j
and (i, j) /∈ E, then Wij = 0. Otherwise, Wij > 0.
Additionally, t represents the iteration number.

When Byzantine nodes are present, abnormal models can
be introduced into the aggregation process, deteriorating the
accuracy of the model. Therefore, robust aggregation methods
and filtering of attackers are necessary.

IV. PROPOSED METHOD

In order to overcome the challenge of distinguishing be-
tween benign and Byzantine models during the early stages of
performance-based learning, the proposed method ensures that
each node i integrates only models that satisfy the following
condition, based on its local data.

Fi(x; ξi)− Fj(x; ξi) ≧ θ (4)

θ is a threshold that is set high in the early stages of learning,
allowing the selection of models with better generalization
performance than the node’s own model. However, from the
perspective of neighboring node j, the local data of node i
serves as test data, making it increasingly difficult for j’s
model to achieve a lower loss than that of node i, which
has been training on this data. As a result, fewer models
meet the condition, leading node i to continue learning in
isolation, which can cause overfitting. When overfitting occurs,
in addition to lowering the threshold, if no models exceed the
threshold, node i will adopt models that satisfy the following
condition:

j ∈ argmin
j∈Ni

Fj(x; ξi) (5)

In this study, each node calculates the test error at the end
of each epoch and determines that overfitting has occurred
if the minimum test error is not updated for 5 consecutive

Proc. IEEE 43rd Int'l Conf. on Consumer Electronics 
(IEEE ICCE 2025), January 2025



0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Round

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Proposed Method
UBAR
D_Zeno
D_Krum

(a) Br = 0.1
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(b) Br = 0.3

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Round

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Proposed Method
UBAR
D_zeno
D_Krum

(c) Br = 0.5

Fig. 1. Accuracies with “Max Attack”. Note that Br is Byzantine rate
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Fig. 2. Accuracies with “A little is enough”. Note that Br is Byzantine rate.

epochs. The learning process starts with θ = 0.1, and each
time overfitting is detected, the value of θ is reduced by 0.1.
However, to prevent the infiltration of Byzantine models, the
lower bound of θ is set to −0.1. Additionally, momentum was
employed to stabilize model convergence, with the momentum
coefficient set to 0.9. Let N i,t

f denote the set of neighboring
nodes of node i after filtering at iteration t, and the model is
aggregated as follows:

F t
i =

1

|N i,t
f |

∑
j∈Ni,t

f

xj (6)

xt+1
i = αx

t+1/2
i + (1− α)F i

t (7)

In this study, α was set to 0.5.

V. EXPERIMENTS

In this section, we verify through simulation experiments
whether the proposed method is more resistant to both simple
and sophisticated attacks compared to existing methods. In
this study, we assume an environment where each node
communicates and learns synchronously.

A. Simulation Settings

1) Dataset & Model: The CIFAR-10 dataset [14] was
used in the experiment. The dataset was distributed so that

the data distribution for each client was independent and
identically distributed (IID). The model used was a CNN with
two convolutional layers and two fully connected layers. The
learning rate was set to 0.01 for all nodes, and the batch size
was fixed at 256.

2) Network Topology: The number of nodes in the network
was set to 10 for the experiments. The topology of the decen-
tralized network was constructed based on the connection rate
between nodes, which is commonly used in many previous
studies. The connection rate, denoted as Cr, represents the
probability that an edge exists between any two nodes. Since
many prior studies fix Cr at 0.4 for experiments, the same
value was used in this study. The proportion of Byzantine
nodes in the network is represented by Br, and experiments
were conducted with three different values for Br. Addition-
ally, it is assumed that the network is static in this study.

3) Baselines: As baselines for the proposed method,
D Krum [10], UBAR [12], and D Zeno [11] were used in
the simulation experiments.

4) Byzantine Attacks: To verify whether the proposed
method has robustness against attacks compared to existing
methods, we implemented the ”Max Attack,” representing
a simple attack, and ”A little is enough,” representing an
sophisticated attack.

(a) Max Attack: The attacker adds noise to the model
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as follows and sends it to the benign nodes. Here, d
represents the dimension of the model parameters.

x
t+1/2
i [d] = −max{xj [d]|j ∈ H} (8)

(b) A little is enough: The attacker sends a model to the
benign nodes, which is perturbed from the average
model parameters of the benign nodes.

x
t+1/2
i = xt+1/2

avg − zσ (9)

Here, x
t+1/2
avg is the average model parameter of the

benign nodes, σ is the standard deviation, and z is
determined as follows:

z = max
z

{
φ(z) <

n−B − s

n−B

}
(10)

φ(z) is the cumulative standard normal function, and s
is given by s =

⌈
n
2 + 1

⌉
.

B. Simulation Results

1) Max Attack: Figure 1 illustrates the accuracy improve-
ment over rounds for each defense method as the Byzantine
ratio increases during the Max Attack. The proposed method
converges faster compared to existing methods and remains
effective even as the Byzantine ratio increases. Additionally,
a rapid improvement in accuracy is observed after around 500
rounds. This is because overfitting begins around 500 rounds,
leading to a reduction in the threshold, and at least one model
is incorporated into the aggregation process.

2) A little is enough: Figure 2 shows the accuracy improve-
ment over rounds for each defense method as the Byzantine
ratio increases during the “A little is enough” attack. The
proposed method shows faster model convergence compared to
other methods and continues to function even as the Byzantine
ratio increases. Furthermore, when the Byzantine ratio is 0.5,
similar to the Max Attack, while the accuracy of other methods
deteriorates, the proposed method maintains an accuracy of
over 0.5.

VI. CONCLUSION

In this study, we proposed a novel filtering method that
overcomes the challenges of performance-based approaches.
As a result of the simulation, the proposed method not
only converges faster than other existing methods, but also
maintains accuracy even when the Byzantine ratio increases.
Specifically, when the Byzantine ratio is 0.5, the accuracy of
models in existing methods is significantly degraded, whereas
the proposed method maintains an accuracy of over 0.5. Future
work will focus on the dynamic adjustment of the threshold θ
and the convergence analysis of the proposed method.
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