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Abstract—In the ever-changing environment of edge cloud
systems, it is necessary to allocate diverse cloud resources in an
efficient manner, at the same time, reducing energy consumption.
A simple distributed resource allocation model is proposed in a
previous study that utilizes a pseudo cost function of resource
load, and it is shown that a convex function allows energy
saving by pooling idle edge servers. In this paper, we extend
this cost model beyond simple load, and present a method to
balance computation and communication by merging multiple
constraints into the cost function. We show trade-offs among
soft constraints along with energy saving effects by simulation,
using specific scenarios with computational and communication
constraints. Our simulation results show that the combination of
a convex function with a polynomial penalty function works well
for balancing energy saving and other soft constraints.

Index Terms—edge computing, autonomous resource manage-
ment, convex cost function, cloud morphing

I. INTRODUCTION

In the future edge computing, diverse and geographically
scattered computing resources such as small PC servers and
micro-datacenters can be utilized as part of larger cloud
services. To make full use of such diverse resources in an ever-
changing edge cloud environment, it requires a flexible and
efficient resource management model that dynamically opti-
mizes the resource usage considering multiple constraints such
as edge server load and network latency. At the same time, the
system needs to be resilient in coping with unexpected events
and easy to operate so that it should be decentralized and
autonomous.

The cloud morphing model [1] proposes a method for au-
tonomously allocating resources using pseudo cost functions.
It is a distributed algorithm to find the best computing node
for a given job, by a simple cost-minimizing job allocation
method. The cost of a resource dynamically changes as a func-
tion of resource load, which works to avoid over-concentration,
also known as congestion pricing [2], [3].

A cost function can be used for both hard constraints and
soft constraints. Hard constraints are those that the system
must always adhere to, while soft constraints are those that
the system should strive to meet as much as possible. System
designers determine the priorities of these constraints based
on the objectives they wish the system to achieve. A cost
function that monotonically increases with load can implement
congestion avoidance as a soft constraint as well as capacity
limit as a hard constraint.

In addition, the use of a convex cost function is proposed
in [1] to maintain the load of active servers in a target range,

and to conserve energy by placing idle servers into a standby
mode. The paper primarily explains the behavior of convex
functions on server load, and does not examine interactions
with other constraints such as communication requirements.

In this paper, we investigate how to balance computation and
communication costs, by incorporating different constraints
into cost functions, and validate their effects by simulation. In
our pseudo cost function, hard constraints are enforced by a
barrier function that increases to infinity as the load approaches
the capacity limit. On the other hand, soft constraints are
implemented as some form of penalty function that raises
the cost as the system deviates from the constraints. For
example, a convex function is used to keep servers’ load in a
certain range, and a monotonic polynomial function is used for
communication distance soft constraint. Our simulation results
show that the combination of convex functions and polynomial
penalty functions works well for balancing different soft con-
straints such as energy saving and the communication distance
constraint.

II. RELATED WORK

The penalty and barrier function methods approximate
a constrained optimization problem with an unconstrained
one [4], and are used in robotics for safety critical control [5].
The cloud morphing model [1] proposed by Cho et al. can
be viewed as an attempt to apply penalty and barrier func-
tions into cloud resource management, assuming that micro-
services would evolve to enable flexible utilization of diverse
edge resources. They propose a simple allocation model that
minimizes pseudo costs by applying congestion pricing [2],
[3] to resource allocation in edge clouds. In this model, the
pseudo cost sharply increases as the server load approaches
its capacity, reflecting the capacity hard constraint in the
function. At the same time, the pseudo cost is also used to
avoid congestion, which works as a penalty function when the
load exceeds the target value. Moreover, by using a convex
function for the pseudo cost, they propose a method called
idle-resource pooling that reduces energy consumption by
maintaining the load of active servers near the bottom of the
convex curve and keeping unnecessary servers in a standby
mode.

Although the proposed model consists of computational
and communication costs, the paper [1] primarily focuses on
explaining the behavior of idle-resource pooling using convex
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functions. It does not delve into how to balance compu-
tation and communication or their interaction. Furthermore,
the pseudo cost is simply a function of load and is not
used for constraints other than capacity. In this paper, we
extend the pseudo cost function model to incorporate multiple
constraints, using communication distance as an example,
and show specific methods for balancing computation and
communication.

As for other prior studies, there exist rich collections of
work in optimizing resource allocation in edge cloud sys-
tems [6]–[8], in congestion pricing or smart data pricing for
networking [9]–[12], and in carbon-aware networking [13]–
[15]. In one of the early studies that used cost functions
for networking, Murphy et al. [16] applied cost functions
to network bandwidth allocation. Xu et al. [6] proposed an
auction model for the edge computing infrastructure layer.
Wagner et al. [17] used congestion pricing for resilient job
allocation in a distributed military cloud. Our approach differs
from these in using convex functions and considering different
types of soft constraints, in the context of micro-service based
edge resource allocation.

III. MODELS

We follow the system model proposed in [1] and use the
same but slightly simplified notations as in Fig.1.

A. System Model

When a user (who could be a drone) initiates a service
request to a nearby service allocation server (not shown in
Fig.1), the server creates a series of micro-service jobs to
fulfill the request. The server obtains the necessary resource
information for each job, identifies the locations of the user
and the required data object, and asks nearby edge servers
for available resources and their current costs. The micro-job
is then allocated to the edge that minimizes the overall cost
for the service. Note that the pseudo cost is a metric for the
resource allocation purpose and should not be confused with
monetary charge.

We assume that each micro-job is ephemeral, short-lived
and independent of each other, which allows stateless micro-
job allocation. Although it may not be true for the currently
available micro-services, we believe it would be feasible in the
future. We also assume that a user finds a nearby allocation
server by a discovery protocol, and the allocation server knows
nearby edge servers a priori.

B. Micro-job Assignment

In our model, a micro-job is defined as J(p, q, r, s). Here,
p denotes required computational units, q denotes frontend
communication amount with the user, r denotes backend
communication amount with data object, and s is the number
of time slots. The communication costs incurred with q and
r are distance-dependent so that an interactive job having
q ≫ r will be placed close to the user, and a data-intensive
job with q ≪ r will be placed closer to the data. For the
sake of simplicity, we do not differentiate the directions of

Hj(i)
edge:i data:ouser:m

Gf,j(m,i) Gb,j(i,o)

Fig. 1: System model: finding the cost minimizing edge:i for
executing a requested micro-job:j from user:m using required
data:o.

communication for q and r, and assume only one user and
one data object per micro-job in this paper.

A micro-job is specified by a service provider, who can
optionally associate weights with it. For instance, a service
provider may assign a higher weight to the frontend commu-
nication of a delay-sensitive job to ensure the job is placed
close to the user. In this manner, cloud service providers can
prioritize which type of resources should be used for a specific
service.

When a user requests a micro-job, the allocation server
identifies the optimal edge to allocate the required resources
for J : p, q, and r for duration s. The pseudo cost E to host
micro-job j for a unit time at edge i for user m and data
object o is calculated as the sum of the computing cost and
the communication cost:

Ej(i) = Hj(i) +Gj(i,m, o)

here, Hj(i) represents the computing cost to run micro-job j
at edge i, and Gj(i,m, o) denotes the communication cost to
run micro-job j at i between m and o.
Hj(i) is dynamically calculated using f(ρ), a cost function

of resource load ρ. Similarly, Gj(i,m, o) is the sum of the
frontend communication cost Gf,j and the backend commu-
nication cost Gb,j and calculated with g(ρ, d), a cost function
of both load ρ and distance d:

Hj(i) = p · f(ρi)
Gj(i,m, o) = Gf,j(m, i) +Gb,j(i, o)

= q · g(ρmi, dmi) + r · g(ρio, dio)

To assign micro-job j, the server simply selects the edge
that minimize the cost: argmini Ej(i).

C. Pseudo Cost Functions for Computing

The pseudo cost of a resource, f(ρ), is a function of load,
designed as a barrier function for optimization [4]; the capacity
constraint is enforced by a penalizing cost when approaching
the full capacity.

The unique idea in [1] is the use of a convex function for
idle-resource pooling that tries to keep the load of active
resources in the appropriate range, resulting in placing unused
resources to a standby mode for energy saving.

The standard convex cost function is shown in Fig.2 and
defined as: f(ρ) = (2ρ − 1)2/(1 − ρ) + 1. This function is
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Fig. 2: Cost functions for computing: convex, monotonic and
constant.

designed to have the properties: min f(ρ) = f(.5) = 1, and
f(0) = f(.75) = 2. The cost grows rapidly when ρ > .75,
which would activate an idle resource in the pool. Therefore,
the system automatically tries to keep ρ ≤ .75, aiming at
ρ = .5.

On the other hand, the standard monotonic cost func-
tion tries to distribute the load equally, and is defined as:
f(ρ) = ρ4.5/(1−ρ)+1, to roughly match the standard convex
cost function in [.5, .75], the working load range. We also use
the constant cost function that is not affected by load for
purposes of comparison: f(ρ) = 2.

D. Hard Constraints vs. Soft Constraints

In our pseudo cost model, a hard constraint is enforced by
a barrier function and a soft constraint is realized by a penalty
function. Our monotonic function of a resource load works as
both hard constraint and soft constraint; it is a hard constraint
that the load cannot exceed the capacity, at the same time, it is
a soft constraint that avoids congestion as the load increases.
Our convex function realizes another soft constraint that tries
to keep the load at the target working range.

A cost function can have multiple constraints, by adding
a different term for each constraint. Also, the variable for a
constraint is not limited to the load of a resource; for example,
latency or CO2 emissions could be a constraint variable.

The behaviors for hard constraints are straightforward be-
cause they rarely interfere with each other, but the interactions
among different soft constraints require trade-offs in compro-
mising each constraint even though they are automatically
adjusted by cost functions. We will illustrate interactions of
soft constraints using specific examples.

E. Simulation Model

In our simulation, we use a scenario in which a flock of
drones are assigned to nearby edge servers in order to show
the interactions of constraints. The computing constraints are
that each edge server can handle up to a limited number of
drones at a time, and it is preferable to make idle servers as
many as possible. The communication constraint is that the
distance between a drone and the assigned edge should be
less than a predefined threshold.
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Fig. 3: Network distance cost functions: pow8, pow1 and
constant.

For simplicity, we assume the network capacity is abundant
so that the frontend and backend communication loads can
be ignored (e.g., J(p = 1, q = 1, r = 0, s = 1) and
g(ρ, d) ≈ g(d)). Note that we use only 2 soft constraints for
the simulation to illustrate interactions between different soft
constraints, since interactions are similar with 3 or more con-
straints. Also, the use of drone distance for the communication
cost is not very general but it is used as a simple example to
illustrate the location-dependent nature of the communication
cost.

The distance constraint is a soft constraint and expressed
by a polynomial function: G = g(d) = (d/Dth)

n+1. Here, d
is the distance between a drone and the assigned edge server,
and Dth is the soft distance threshold. We use n = 1 and
n = 8 to illustrate the difference, shown as pow1 and pow8
in Fig.3. In general, a threshold-based soft constraint can be
represented with this type of functions. As n becomes larger,
the slope of the function becomes steeper, which has 2 effects:
when d < Dth, a minor difference becomes more negligible
and when d > Dth, the penalty becomes stronger. We also
use n = 0 as constant in Fig.3 that ignores distance.

Thus, the total cost E for assigning drone m to edge server i
is a function of the load of i and the distance d between m
and i:

E(i) = H(i) +G(i) = f(ρi) + g(dmi)

IV. EVALUATION

To illustrate the interactions of different soft constraints in
balancing computation and communication costs, we conduct
experiments through simulations. In the simulation, a flock of
drones move around on a square area and are dynamically
assigned to edge servers, based on the server’s load and the
distance to the server. When a drone requests a micro-job,
it is assigned to the edge server having the lowest cost, and
the drone requests another micro-job when the micro-job is
finished. The simulator plays a role of the allocator who
knows the loads of the edge servers and the position of a
job-requesting drone.

For the computational cost, we compare 3 functions in
Fig.2: the convex function, the monotonic function, and
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TABLE I: Simulation settings

Number of servers 10
Map size 300×300
Distance threshold 150
Max number of allocatable drones per server 25
Number of drones (total Load=0.2) 50
Number of drones (total Load=0.4) 100
Number of drones (total Load=0.6) 150
Micro-job duration (steps) 8-24
Simulation length (steps) 10,000

constant. The convex function is our main target that tries to
keep the load of an active server between the range [0.5, 0.75]
and, as a result, enables idle-resource pooling by shifting loads
to non-idle servers. The monotonic function tries to distribute
load equally among servers. The behaviors of the convex and
monotonic functions are similar when the load is higher than
0.5 so that their differences can be observed only when the
load is light. The constant ignores the server load and used
as a baseline.

For the communication cost, we compare 3 functions in
Fig.3: pow8, pow1 and constant. The pow8 function is our
main target to keep the distance roughly within the distance
threshold. With pow8, the impact of distance is negligible
when d < 0.75×Dth and the penalty quickly increases when
d exceeds Dth. With pow1, the cost is a linear function of
distance which is a weaker constraint than pow8, and used to
illustrate differences from pow8. With constant, the distance
is ignored and used as a baseline.

A. Simulation Settings

The parameter settings used in the simulation are shown
in Table I. The number of servers is set to 10, and placed
non-uniformly. Each server can handle up to 25 drones at
a time, allowing for a total of 250 drones to be processed
simultaneously. The drones move around as flocks using the
boids algorithm [18].

B. Comparing different cost functions

1) Overview by snapshots: To illustrate the behaviors of the
different cost functions, we use snapshots of the simulation
outputs shown in Fig.4; Fig.4a and Fig.4b consider only
server load, Fig.4c considers only communication distance,
and Fig.4d combines both constraints and automatically bal-
ances the different soft constraints. The snapshots are taken
at a specific time in the same simulation scenario so that
the positions of the drones are the same in the snapshots.
This scenario uses 100 drones, and the overall load on the
servers is kept at 0.4 (100/250). Later, we vary the total load
by increasing the number of drones.

Each snapshot figure has 3 panels: the drone assignment
map on the left, the server loads on the upper right and the
drone distance on the lower right. The drone assignment map
shows the positions of the edge servers with circles and the
drones with black points, as well as their assignments with
dotted lines. The color of an edge server shows the load of

the server. The plots on the right show the load of each server
and the distance to the assigned server for each drone.

Fig.4a shows a simple load balancing among the server by
means of the monotonic cost function, without considering
the distance cost (constant). With the monotonic cost func-
tion, a new micro-job is assigned to the server having the
lowest load so that all the servers have similar load. In the
figure, all the servers have the load at around 0.4, while the
distance is ignored.

In Fig.4b, the cost function for the server is replaced by
the convex cost function for idle-resource pooling that tries
to keep the load of active servers in the target range [.5, 0.75]
and make the other servers inactive. In the figure, 6 active
servers have the load at around 0.65 and 4 servers are idle.
Again, the distance is ignored.

On the other hand, Fig.4c considers only the distance and
ignores the server load. Each drone is assigned to the closest
server by means of the polynomial cost function. If the closest
server is full, the drone is assigned to the next closest server.
In the figure. most of the drones are assigned to the closest
server, but some are overflowed to the next closest server.

In Fig.4d, both server load and distance are considered by
combining the convex cost function for the server load and the
polynomial cost function for the distance. We can observe that
the load of the active servers are less than 0.7 and 3 servers
are idle, and the drone distances are less than the threshold of
150. In this snapshot, both constraints are fully satisfied but it
is not always the case during the simulation. When it is not
possible to satisfy both load constraint and distance constraint,
the trade-off is made so as to minimize the sum of the penalty
costs.

2) Comparing metric distributions: The snapshots in Fig.4
are taken at a specific time during the simulation. Next, we
examine the distributions of 3 metrics over the entire duration
of the simulation in Fig.5: the non-idle server load, the number
of idle servers, and the drone distance. The distributions are
shown by violin-plots with quartile bars, grouped by the 3
server cost functions, and each group has the 3 distance cost
functions.

In Fig.5a, the median load values of the convex cost
group are around 0.7, much higher than the monotonic and
constant cost group with the median load values at around
0.4. The convex cost group is able to maintain the load
roughly within the target range [.5, .75], where constant that
ignores the distance has the shortest tail while pow1 and
pow8 have slightly longer tails. The monotonic cost group,
distributing the load evenly among the servers, results in lower
load values than the convex. The constant cost group ignores
the load so that some servers experience capacity overflow.

In Fig.5b, the median numbers of idle servers are around
3.5 for the convex cost group, around 1.0 for the monotonic
cost group, and about 2.0 for the constant cost group. The
convex cost group, by keeping the higher load for the active
servers, is able to make more servers into the idle state for
energy saving.
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(a) monotonic-constant: even load balancing, ignoring the distance. (b) convex-constant: targeted load, ignoring the distance.

(c) constant-pow8: shortest distance, ignoring the server load. (d) convex-pow8: targeted server load with distance threshold.

Fig. 4: Simulation snapshots with 4 combinations of cost functions: each snapshot consists of the drone assignment map, the
server load panel and the drone distance panel.

Regarding the distance distributions in Fig.5c, the green-
colored constant in each group ignores the distance, leading
to random drone assignments. In the convex and monotonic
cost groups, the median distance of pow8 is larger than pow1
but its upper tail of the distribution is shorter. This is because,
with pow8, the distant cost difference is smaller when under
the threshold but the penalty becomes much larger when
exceeding the threshold. Note that convex with pow8 has a
shorter tail than constant with pow8 that ignores the server
load, for the reason that the latter often fills up the closest edge
and needs to overflow to the potentially-distant next edge while
the former never fills up edges and always has allocatable
space at the closest edge.

We can observe the interaction between the server load
constraint and the distance constraint; when making a com-
promise with the two constraints, the penalty function plays a
role in balancing the degree of compromises. For the distance
constraint, pow8 imposes a stronger penalty than pow1, and
thus, pow8 has a shorter tail for the distance in exchange for
the slightly longer tail for the server load.

The simulation results show that with the convex server
function and the polynomial distance function, both server load
and distance are mostly maintained within the target range. In
addition, it is possible to prioritize one of the soft constraints
by using a stronger penalty function.

C. Varying Load

So far, the total load is fixed to 0.4. In order to illustrate the
interactions between the computational and communication
constrains under different total load, we compare the tail of
the distribution with the 95th-percentile (p95), by varying the
overall server load at 0.2, 0.4 and 0.6 in Fig.6,

In Fig.6a, we compare the p95 load of non-idle servers
against the p95 distance, with 5 major combinations of the
server load functions and the distance functions. The soft
constraint for the distance on the X-axis is the threshold 150
(blue area in the figure), and that for the server load on the
Y-axis is the working load range [0.5, 0.75] (yellow area in
the figure), with the overlapping area representing the target
area (green area in the figure).

The convex with constant is a baseline that ignores the
distance, and thus, plotted on the far right. Similarly, the
constant with pow8 is another baseline that ignores the server
load. Again, our focus is the convex with pow8, and it is
compared with the convex with pow1.

In Fig.6a, the p95 load increases with the increased overall
load, and the convex with pow8 stays within the target area
with load 0.2, but slightly above the area with load 0.4 and
0.6. Compared with the convex with pow1, the p95 distance is
smaller with the convex with pow8 because the pow8 works
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(a) p95 distance vs. p95 load.
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(b) p95 distance vs. median idle-server count.

Fig. 6: Comparing the tail of distributions with varying load.

as a stronger distance penalty, as we observed in Fig.5c. We
can confirm in Fig.6b that the number of idle servers decreases
as the total load increases.

D. Summary
In the simulation, we use a specific scenario with a convex

function for energy saving and a polynomial function for the
distant constraint. However, in general, we can use a convex
function for a soft constraint aiming at a specific target value,
and a monotonic polynomial function for a threshold-based
soft constraint.

Our pseudo cost model allows multiple hard and soft
constraints embedded into a pseudo cost function, and en-
ables automatically balancing different constraints in a dis-
tributed manner. Although there are interactions among soft
constraints, different constraints are automatically balanced
with appropriate penalty functions. If fine-tuning is needed, a
stronger or weaker penalty function can be used to prioritize
a certain soft constraint.

V. CONCLUSION

Edge computing in the near future would utilize flexible
micro-services, leveraging diverse and geographically scat-
tered computing resources. A possible solution for optimizing
resource allocation in edge is a simple cost-based allocation
model.

In this paper, we have identified the roles of hard constraints
and soft constraints in the cost functions in the resource allo-
cation model, and showed that soft constraints could interfere
with each other. To illustrate the trade-offs in balancing com-
putational and communication constraints, we have conducted
simulations with the cost functions with specific scenarios. The
simulation results showed that the combination of a convex
function with a polynomial penalty function works well for
balancing different requirements such as energy saving and
the communication distance constraint.

Future work includes exploring more realistic simulation
scenarios, considering communication loads with the user and
required data, with different soft constraints. We are also
interested in investigating methods for edge cloud operators
to specify conflicting constraints in an intuitive manner.
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