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Abstract. Using random walks for sampling has proven advantageous
in assessing the characteristics of large and unknown social networks.
Several algorithms based on random walks have been introduced in recent
years. In the practical application of social network sampling, there is
a recurrent reliance on an application programming interface (API) for
obtaining adjacent nodes. However, owing to constraints related to query
frequency and associated API expenses, it is preferable to minimize API
calls during the feature estimation process. In this study, considering the
acquisition of neighboring nodes as a cost factor, we introduce a feature
estimation algorithm that outperforms existing algorithms in terms of
accuracy. Through experiments that simulate sampling on known graphs,
we demonstrate the superior accuracy of our proposed algorithm when
compared to existing alternatives.

Keywords: Social Network · Random Walk · Graph Sampling.

1 Introduction

Examining the graph structure of nodes and edges in online social networks
(OSNs) is a significant challenge, prompting active research efforts to address
this issue [4, 21, 7, 15]. However, data access in conventional OSNs, like X4, is re-
stricted [1–3], rendering it nearly impossible to acquire and analyze the complete
graph. Therefore, a pragmatic strategy involves estimating the graph’s features
by sampling a representative portion of the OSNs.

To estimate OSNs’ features through sampling, leveraging random walks proves
advantageous. Several random walk algorithms have been introduced for unbi-
ased feature estimation [9, 18, 25, 5, 13, 19, 22, 20]. Many OSNs offer application
programming interfaces (APIs) that provide access to information about a user’s
follower or followee lists, specifically details about adjacent nodes [1–3]. By itera-
tively selecting a node at random from the adjacent nodes obtained through the
API and transitioning, random walk sampling on OSNs becomes feasible. Ex-
ploiting the inherent Markov property of random walks enables the computation
4 https://twitter.com
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of suitable weights for the obtained sample sequence, enabling the derivation of
unbiased estimates for OSNs [18, 7, 16]. Uniform independent sampling based on
node IDs is generally challenging owing to the unknown distribution of node
IDs [6]. Additionally, traversal methods like breadth-first sampling [14] cannot
provide unbiased features owing to unknown biases in the acquired sample se-
quence.

APIs from common OSNs restrict the number of queries allowed per unit
of time. Moreover, certain OSNs, such as X, have introduced charges for API
usage. Therefore, estimating OSN features with minimal API calls is crucial,
considering time and cost factors. Iwasaki et al. [12] treated the API call count
as a cost and compared it with existing random walk-based feature estimation
algorithms. In our approach, we focus that many APIs allow obtaining both the
list of adjacent nodes and the degree of those nodes simultaneously. We leverage
this information to develop a more efficient algorithm. In the proposed algorithm,
not confined to degree estimation, we can also estimate unbiased OSN features
for any features obtained simultaneously when acquiring the list of adjacent
nodes.

In this study, we propose an algorithm for estimating features in OSNs us-
ing random walks and properties of adjacent nodes. Through simulation experi-
ments, we demonstrate that our proposed algorithm attains the highest accuracy
in estimating OSN features compared to existing methods. Our proposed method
leverages the properties of adjacent nodes, which are obtained along with the
adjacent node acquisition API, for unbiased feature estimation.

2 Preliminaries

2.1 Definitions and Notations

In this study, we use the notation of a directed graph G = (V,E) to represent
the social graph. V = {v1, v2, ..., vn} represents the set of nodes (users), with
n being the total number of nodes in the graph (n = |V |). E is the set of
directed edges, depicting the following relationships. For every edge (vi, vj), we
introduce a set of edges and reverse edges by adding (vj , vi), denoted as E′.
When a directed edge (vi, vj) exists, we refer to node vj as the friend of node
vi, and node vi as the follower of node vj . For a node vi ∈ V , we define the
set of friends as Nout(vi) = {vj ∈ V : (vi, vj)} and the set of followers as
Nin(vi) = {vj ∈ V : (vj , vi)}. Additionally, N(vi) = Nout(vi) ∪ Nin(vi). We
also define the out-degree and in-degree of each node as dout(vi) = |Nout(vi)|
and din(vi) = |Nin(vi)|, respectively. Moreover, we introduce the total degree as
dsum(vi) = din(vi) + dout(vi), and the mutual connections between followers and
friends as din-out(vi) = |Nout(vi) ∩Nin(vi)|.

We define the property of node vi as a(vi). Examples of the property a(vi)
include the degree of vi, the number of posts, and binary labels such as bot
labels.
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2.2 Model

In this study, we focus on the APIs which enable acquiring the degree information
(number of friends, number of followers) and properties to be estimated for each
adjacent node when querying information about them. To clarify, when querying
the list N(vi) of adjacent nodes for node vi, we assume that the out-degree
dout(vj), in-degree din(vj) and property a(vj) of any node vj within N(vi) can
be obtained simultaneously. In real OSNs, X and Mastodon offer APIs that
adhere to this model [3, 2].

We treats the frequency of acquiring adjacent nodes as a cost. We assume that
a single instance of adjacent node acquisition allows for the simultaneous retrieval
of Nin(vi) and Nout(vi). Regardless of the number of adjacent nodes, we assume
that all adjacent nodes can be obtained at a fixed cost of 1. Many studies on
sampling methods involving random walks have traditionally assessed accuracy
based on the size of the sample sequence [7, 16, 9]. In contrast, our study adopts a
different perspective by considering the acquisition of a list of neighboring nodes
as a cost. This approach, aligned with the methodology of Iwasaki et al. [12],
stems from the realization that obtaining the list of neighboring nodes can pose
a practical bottleneck in OSN sampling.

We assume that the graph G is weakly connected and remains static during
the random walk. Additionally, upon transitioning to a node, we store informa-
tion like its degree and properties. This includes maintaining a list of adjacent
nodes along with their respective degrees and properties.

3 Proposed Method

In this section, we present a sampling algorithm based on random walks that
utilizes the properties of each acquired adjacent node during the process of ob-
taining adjacent nodes. We discuss the Markov chain aspect within our proposed
method to elucidate the algorithms employed for estimating these features.

The features on the OSN, which our proposed method can estimate are de-
rived from properties obtained concurrently with the acquisition of adjacent
nodes. In specific terms, when retrieving the list of adjacent nodes for node vi,
if we can get the property a(vj) for any node vj in the adjacent node list N(vi),
our proposed method can estimate average and distribution of the property.

3.1 Probabilistic Addition of Adjacent Nodes to the Sample
Sequence

We present an algorithm of our proposed method in Algorithm 1. The funda-
mental transition method in our algorithm closely resembles a standard random
walk. However, after transitioning to node vi and its addition to the sample
sequence, a distinctive element is introduced. With a probability α, instead of
the typical transition, we incorporate a randomly chosen node from the acquired
adjacent nodes into the sample sequence. Here, α is a parameter in the range
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Algorithm 1 Proposed sampling algorithm
Input: n0 : initial node, α : parameter(0 ≤ α < 1), b : number of queries
Output: sampling_node_list : sample sequence
1: vi ← n0

2: sampling_node_list← {vi}
3: staying_node_list← {vi}
4: query_count← 1
5: while query_count < b do
6: N(vi)← A list obtained by concatenating Nout(vi) and Nin(vi)
7: p← Random number generated between 0 and 1
8: while p < α do
9: vj ← A node uniformly selected at random from neighbors

10: Append vj to sampling_node_list
11: p← Random number generated between 0 and 1
12: end while
13: vi ← A node uniformly selected at random from neighbors
14: if vi /∈ staying_node_list then
15: query_count← query_count+ 1
16: end if
17: Append vi to sampling_node_list
18: Append vi to staying_node_list
19: end while
20: return sampling_node_list

0 ≤ α < 1, and the transition from node vi to node vj occurs with a probability
of 1− α. In this paper, we refer to the node reached after the transition as the
staying node, the node added to the sample sequence as the sampling node, the
operation executed with a probability α as adjacent node sampling, and the op-
eration performed with a probability 1 − α as transition sampling. In adjacent
node sampling, the staying node remains unchanged, and the sampling node is
randomly selected from the adjacent nodes of the staying node. In transition
sampling, the staying node is updated, and the sampling node becomes identical
to the staying node.

In this study, we treat OSNs as directed graphs, allowing transitions and
sampling to occur even on reverse edges. This occurs because, in real OSNs
when transitioning between users, it is possible to choose users who transition
from both followers and friends. Consequently, the list of adjacent nodes for a
node vi is a combination of its in-neighbors Nin(vi) and out-neighbors Nout(vi).
In this context, the list of adjacent nodes for node vi is an array that allows
duplicates. Specifically, for a node vj , if vj ∈ Nout(vi) ∩ Nin(vi), then node vi
has two occurrences of node vj in its list of adjacent nodes. Because the node to
transition or sample is uniformly and randomly chosen from the list of adjacent
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nodes, a node appearing twice in the list has double the probability of being
chosen compared to a node that appears only once.

In our study, sampling adjacent nodes is a cost-free process because we define
the acquisition frequency of adjacent nodes as the cost. This operation randomly
adds nodes to the sample sequence from the existing list of adjacent nodes, in-
curring no new expenses. In contrast, transition sampling involves obtaining the
adjacent nodes of the transition destination node, incurring a cost. However,
we assume that the information about once-acquired adjacent nodes is stored
(Section 2.2). Consequently, if a node previously sampled through transition
sampling is sampled again, no additional cost is incurred. Therefore, the fre-
quency of acquiring adjacent nodes corresponds to the count of new transition
sampling events.

We use the term query count to represent the number of times the list of
adjacent nodes is obtained through the new transition sampling. The proposed
sampling algorithm stops when the number of acquired adjacent nodes reaches
a specified query limit b. This limit can be established based on the OSN’s API
specifications, ensuring a reasonable number of queries within a given time frame.
Notably, a higher query limit b generally correlates with improved accuracy in
estimation accuracy. The relationship between the query limit and estimation
accuracy are elucidated in Section 4.

3.2 Feature Estimation

We introduce an algorithm for feature estimation in the context of the proposed
sampling algorithm. In this section, we present the algorithm for estimating fea-
tures using in the proposed sampling method. The primary objective is to apply
weighting to the sample sequence generated by the proposed transition sampling
algorithm, creating a process for estimating the expected value of features on
the OSN. The proof of this process can be found in [10].

Let f be any function f : V → R, and consider the uniform distribution
u

def
= [u(1), u(2), ..., u(n)] = [1/n, 1/n, ..., 1/n]. The expected value Eu(f) of the

feature to be estimated on the OSN is given as follows.

Definition 1. Eu(f)
def
= 1

n

∑
v∈V f(v)

To obtain the expected value of the desired feature on the OSN, this can
be accomplished by appropriately defining the function f . For instance, if you
wish to estimate the out-degree distribution P{DG = d}, (d = 1, 2, ..., n − 1) of
a graph G, selecting the function f(v) = 1ldout(v)=d would be suitable.

To define a re-weighting process for obtaining Eu(f) from the sample se-
quence {Zs}ts=1 generated by the proposed sampling algorithm, a new function
g : Ω → R is introduced for the function f as follows.

Definition 2. g(eij)
def
= f(vj)

The function g applies the function f to the sampling nodes in the sample
Zt.

Next, we define a weighting function as follows.
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Table 1. Dataset Overview

Network Type Nodes Edges
ego-Twitter Social Network 81,306 1,768,149
soc-Slashdot Social Network 82,168 948,464

Amazon Product Network 262,111 1,234,877
DBA model Generation Network 100,000 1,000,000

Definition 3. w(eij)
def
= 1

dsum(vj)

In this study, we assume that the number of friends dout(vj) and followers
din(vj) of sampling nodes are accessible. Consequently, we can obtain dsum(vj)
for the sampling node vj .

Here, the following theorem holds.

Theorem 1. For the sample sequence {Zs}ts=1 obtained from the proposed tran-
sition algorithm, as t → ∞,∑t

s=1 w(Zs)g(Zs)∑t
s=1 w(Zs)

→ Eu(f) a.s.

Proof. Refer to [10].

As stated in Theorem 1, for the sample sequence {Zs}ts=1 obtained by the pro-
posed sampling algorithm, the estimator∑t

s=1 w(Zs)g(Zs)/
∑t

s=1 w(Zs) converges to the expected value of the desired
feature on the OSN. Though the sample Zt contains information about both
sampling node X ′

t and the staying node Xt, retaining information solely about
sampling node X ′

t is sufficient for feature estimation. Therefore, in Algorithm 1,
information about the staying node Xt is not returned.

The proposed method can estimate the unbiased features regarding any prop-
erties that can be obtained when acquiring adjacent nodes. This is because the
estimable feature g(eij) for the sample eij added through adjacent node sampling
is derived from the property a(vj) obtained at the same time during the acqui-
sition of adjacent nodes. The specific content of this properties varies based on
the OSN’s API specifications. For instance, in X, which provides degree informa-
tion [3], one can estimate the average degree and degree distribution. Similarly,
in Mastodon, which provides bot rates and post counts [2], these parameters can
also be estimated.

Thus, we have successfully developed a weighting process to estimate the
expected value of features on the OSN for the sample sequence acquired through
the proposed sampling algorithm.

4 Experiment

We assess the accuracy of the proposed method across various networks. In real-
world OSN sampling, the target graph is often unknown. However, for these
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Fig. 1. Average NRMSE for each feature categorized by query rate at each α.

experiments, we conduct sampling simulations on known graphs to facilitate
evaluation.

4.1 Experimental Setup

Dataset: Our experiments utilized three datasets from the Stanford Large Net-
work Dataset Collection [17], and we also employed the Directed-Barabasi-Albert
model (DBA model) [23], a generative model for complex networks. The target
graphs are directed, and we focus on the maximum weakly connected component.
The DBA model extends the Barabasi-Albert model [23] to directed graphs.
Simulation: For the proposed sampling algorithm, the initial nodes are ran-
domly selected from the graph, this process is independent for each experiment.
All sampling simulations are independently conducted 1000 times. Query count
b is chosen by the proportion of the total number of nodes in the graph.
Evaluation metrics: The evaluation metric for each feature estimation is the
Normalized Root Mean Square Error (NRMSE). NRMSE is widely employed in
related studies to assess the accuracy of estimated values [16, 9, 13, 12]; lower
values indicate superior performance. It is computed as follows. NRMSE =
1
x

√
1
N

∑N
i=1(x− x̂i)2 ,where x represents the true value of the feature, x̂i is

the estimated value of the feature in the i-th sampling simulation, and N is the
number of simulations.
Features: The features under investigation in our experiments include aver-
age out-degree and label rate. labels are binary synthetically introduced to the
dataset, simulating scenarios akin to bot labels in real OSNs. Labels are assigned
randomly and repetitively assigned to selected nodes based on the correspond-
ing probability until the labeled node proportion reaches 10% of the total. The
introduction of labeled nodes enables simulations to estimate the proportion of
nodes with certain characteristics.

4.2 Relationship between α and Estimation Accuracy

In the proposed method, we conducted experiments to investigate the relation-
ship between the probability α of performing neighboring node sampling and
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Fig. 2. NRMSE for out-degree estimation.
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Fig. 3. NRMSE for random label estimation.

estimation accuracy. Across each dataset, we varied α from 0.1 to 0.9 in incre-
ments of 0.1. Additionally, we tested α values of 0.95 and 0.99. The query count
was chosen 0.1% to 0.5% of the total number of nodes in the graph, adjusting
in increments of 0.1%. Figure 1 illustrates the average NRMSE for each feature
discussed in Section 4.1. Results are presented for query counts representing
1%, 2%, 3%, 4%, and 5% of all node counts. Figure 1 shows that as α approaches
1, the average NRMSE decreases across all graphs and query numbers. There-
fore, the parameter α should be set to the largest possible value that is still less
than 1.

In practice, α should be determined by considering both the computational
complexity and the API rate limit. The value of α affects the number of adjacent
node samplings, which on average is 1/(1−α) per API call (lines 8 of Algorithm
1). The sampling operation itself is efficient, taking O(1) time (line 9-11 of Al-
gorithm 1). Therefore, the average computational complexity of a adjacent node
sampling for each API call is O(1/(1−α)). As α gets closer to 1, the complexity
of sampling increases dramatically. Thus, α should be set based on the API’s rate
limit. For instance, if Mastodon’s API allows one call per second [2], α should
be chosen to be as large as possible while ensuring that the sampling process
(line 6-18 of Algorithm 1) finishes within one second, depending on the system’s
computational power.
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4.3 Comparison with Existing Methods

We compared the estimation accuracy of each feature between the proposed
and existing methods. Existing methods for comparison include well-known
random walk-based feature estimation techniques: Simple Random Walk with
Reweighting (SRW-rw) [7, 24], Non-backtracking Random Walk with Reweight-
ing (NBRW-rw) [16], and Metropolis-Hastings Random Walk (MHRW) [7, 24].
These existing methods align with those compared by Iwasaki et al. [12] under
the same cost setting. Iwasaki et al. noted a tendency for NBRW-rw to achieve
better accuracy when considering the acquisition frequency of adjacent nodes
as the cost. However, they also highlighted the possibility of accuracy reversal
based on the specific graph and features.

Figures 2 and 3 illustrate a comparison of the NRMSE values for each feature
using the proposed method with α = 0.5, 0.9 and existing methods. The horizon-
tal axis represents the query count as a ratio to the total number of nodes. We
vary the query count ratio from 0.25% to 5%, adjusting in increments of 0.25%.
MHRW has been omitted owing to significant deviations, particularly in the av-
erage out-degree estimation of the DBA model. Across all graphs and features,
the proposed method with α = 0.9 consistently matches or outperforms existing
methods. In the proposed method, we achieved higher accuracy at α = 0.9 com-
pared to at α = 0.5, but even at α = 0.5, it surpasses the existing methods for
many graphs and features. Additionally, the results indicate that higher query
counts b lead to improved estimation accuracy.

5 Related Work

We discuss relevant research on graph sampling. Gjoka et al. [7] compared RW-
rw and MHRW and illustrated that SRW-rw achieved superior accuracy by re-
weighting from the steady-state distribution of random walks to obtain unbiased
estimates. Lee et al. [16] introduced NBRW, a non-backtracking random walk
that avoids revisiting the previous node. Through theoretical and experimental
investigations, they established that NBRW-rw provided unbiased estimates and
outperformed SRW-rw. Iwasaki et al. [12] proposed a method for comparing
sampling algorithms based on query count and demonstrated the potential for
accuracy evaluations of SRW-rw and NBRW-rw to reverse depending on the
feature.

Next, we explore related research focusing on sampling techniques involving
information from neighboring nodes. Han et al. [8] introduced a method in which,
during random walks, adjacent nodes are sampled based on the motif under
estimation. The decision to acquire information from adjacent nodes depends
on the motif, resulting in variations in the probability and depth of obtaining
such information, distinguishing it from our study. Additionally, they consider
the sampled node count as a cost, which differs from our study using API query
count as the cost and estimating various features from adjacent nodes. Illenberger
et al. [11] proposed a technique for estimating features by adjusting the sample
sequence of snowball sampling and collecting information from adjacent nodes
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of accessed nodes. However, their approach assumes knowledge of the overall
node count, distinguishing it from our study, which employs random walks to
estimate features in unknown OSNs.

6 Conclusion

In this study, we introduced a random walk that stochastically utilized informa-
tion from adjacent nodes, considering the number of queries needed to obtain
this information on OSNs as the cost. Through experiments, we demonstrated
that our proposed method provided more accurate estimations for average de-
gree, the proportion of randomly assigned binary labels, the proportion of labels
biased toward high-degree nodes, and the proportion of labels biased toward
low-degree nodes compared to existing methods. Furthermore, experiments con-
ducted across various datasets have revealed that accuracy improves as the pa-
rameter α, representing the probability of adjacent node sampling, approaches
1.
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