French-Japanese workshop on blockchain technologies and applications to digital trust November 14th and 15th, 2023

bit.ly/shudo20231114

19

Tradeoffs Inherent in Blockchain

Kyoto University

京都大学

SimBlock

Kazuyuki Shudo (49)

Startup

1996 Master course, Waseda U.1998 Ph.D. course, Waseda U.2001 AIST

- 2001 A
- 2006 National laboratory 2006 Utagoe, Inc.

2008/12 Tokyo Tech University

- 2022/ 4 Kyoto University
- 2009/ 5 Project manager of Mitou program
- 2023/ 4 Project manager of Mitou Adv. program

2018/11 Advisor, Earlyworks Co., Ltd. 2019/ 1 Mentor, Miraise1 LLP

2022/ 7 Technology Advisor, GMO Internet Group, Inc. 2022/10 Advisor, GMO AI & Web3 Inc.

2023/ 6 Director, Information Processing Society of Japan

Java thread migration system MOBA Java Just-in-Time compiler shuJIT

17,000 downloads, commercial uses

P2P middleware Overlay Weaver Overlay

26,000 downloads from 15 countries Database w/ 673 servers in 41 countries

P2P live streaming UG Live

2 Mitou supercreators, commercialized, simultaneous 10,000 or more audiences

A book Binary Hacks

5 authors, over 10,000 sold

P2P algorithms, 2009 ~

A universal framework for structured overlay / DHT

Distributed databases, 2009 ~

High perf. in both read & write, Causal consistency, NVRAM/SCM Simulation of distributed systems, 2011 ~

100M nodes / 10 servers, 20X perf., on Apache Spark Social network analysis, 2013 ~

Decentralized distributed ML, 2016 ~

Blockchain, 2016 ~ As of Nov. 2023

oftware like a magic

n A simulator SimBlock, Perf. & security, new architecture

Tradeoff (1) The blockchain trilemma

• Termed by Vitalik Buterin, a founder of Ethereum, in 2017

- We all roughly recognize it.
 - Detailed discussion: What is decentralization? ...

A tradeoff between performance and security

 Naïve throughput improvement techniques result in decreased security.
 Result © (Throughput f) E.g. In Bitcoin,

19

1 MB and 10 min

result in 7 TPS.

(TPS)

 Forks disperse the total confirming (hash) power to multiple tails of the blockchain.

Figures are from "Secure High-Rate Transaction Processing in Bitcoin", FC'15, 2015

Tradeoff (2) Blockchain "network" matters

- Performance: # of transactions (TX) / second = TPS
 - An example of a TX: Transfer of 1 BTC from Alice to Bob
 - Existing payments VISA: thousands TPS, PayPal: 320 TPS in average
 - Cryptocurrency Bitcoin: $7 \rightarrow 27$ TPS, Ethereum: around 15 TPS ...insufficient
- Perf. improvements requires faster block propagation.

See the last slide.

A block is propagated between nodes and broadcasted to all the nodes.

Table of contents

- Tradeoffs
 - The blockchain **trilemma**
 - Tradeoff between performance and security
- Research results in our group
 - Tool
 - Scalability (performance)
 - Security
- The blockchain **trilemma** described by a formula

Well-grounded [Sompolinsky 2015]

Hypothetical

[Buterin 2017]

19

Our results

Topics expand from tool and performance to security and trustless.

anthou

19

NORTH Pyongyang

Seoul

Results: Tool Simulator SimBlock

[CryBlock 2019] [IEEE ICBC 2019] [Devcon 5b] [IEEE ICBC 2023]

- A public blockchain "network" simulator
 - developed at Tokyo Tech, and released in June 2019.
- It simulates transmission of blocks
 - Bandwidth and latency over Internet as of 2015 and 2019
 - Intra/inter region BW and latency of 6 regions on the earth
 - Behavior of nodes: Block generation interval, transmission, Compact Block Relay
 - Parameters of Bitcoin, Litecoin and Dogecoin
- Visualizer provided
- Researches :

Results: Tool Simulator Similock [CryBlock 2019] [IEEE ICBC 2019] [Devcon 5b] [IEEE ICBC 2023]

Visualizer Bitcoin network, scaled down to 600 nodes for demo

Article on IEEE Spectrum at IEEE ICBC 2019 in Secul and

in Seoul, and at IEEE ICBC 2023 in Dubai

Open-Source Tool Lets Anyone Experiment With Cryptocurrency Blockchains

SimBlock, a new blockchain simulator, lets users play around with the parameters of Bitcoin, Litecoin, and Dogecoin

By John Boyd

Impacts of Internet improvements and Compact Block Relay [IEEE ISCC 2020]

- SimBlock enabled comparisons:
 - Internet as of 2015 and 2019
 - Presence or absence of Compact Block Relay
 - Block propagation protocol implemented in Bitcoin 0.130 in Aug. 2016

Results: Scalability 10 Proximity Neighbor Selection IEEE Blockchain 2019]

- Selecting a neighbor node based on communication performance
 - A major technique in peer-to-peer field
 - We tried it for DHTs [IEEE ISCC'13]
- Simulator SimBlock was developed for this study

Slow. Disconnect. Fast (or looks fast). Keep connecting.

• Procedure

- Scoring all the nodes that gave me a block
 - Score = exponentially weighted average of (Block arrival time generation time)
- Re-selecting neighbor nodes per 10 blocks received
 - However, selecting K nodes randomly to connect new nodes
 - The best parameter: K = 1, P (weight of the newest propagation time) = 0.3

Results: Scalability **Proximity Neighbor Selection** [IEEE Blockchain 2019]

• Reduced from 11.5 sec to 8.5 sec for slowly propagated blocks.

Results: Scalability **Block sender switchover** [IEEE ISCC 2023b]

- A node switches the block sending node even if it is receiving a block.
 - A node receives data that it has already received. Though, performance is _ improved. Note that a protocol extension eliminates such wasteful comm.

19

Quick notification of block generation

• Broadcasting a bloom filter before the block.

19

VOR PH

Seoul A

NORE

[IEEE ISCC 2023a]

– The bloom filter summarizes the block.

Results: Scalability 14 / 19 Dynamic adjustment of 14 / 19 block generation interval [IEEE Blockchain 2022b]

- Performance (TPS) = # of TX in a block / block interval
 - Bitcoin in 2009: 7 TPS = 1 MiB / 250 byte / 600 second
- Proposal: Adjusting block interval while keeping security
 - Not sacrificing security = keeping the fork rate constant
 - Estimating the fork rate based on block arrival times at nodes

Results: Security 15/19Saving attack to Ethereum-style PoS blockchains and tolerance evaluation

- A saving attack discovered
 - An adversary saves the right to block generation.
 - It generates a block at the most convenient time.
 - 「IEEE Access」に掲載 It keeps a vulnerable condition in which two chains conflict each other.

[IEEE Access 2021]

LayerX Labs、東京工業大学 首藤研究室 との共同研究の成果が 国際ジャーナル

NEWS > 2021/10/6

- We evaluated tolerance for the attack, of each fork choice rule
 - FMD GHOST is the best, as planned

Accurate expression of theoretical fork rate

- Accurate expression of theoretical fork rate (a security index) proposed
 (a security index)
 - Considering hash rate

 $\begin{array}{c|c} Tw & {\color{black}{Hash rate-weighted}} \\ \hline Tw & {\color{black}{Block propagation time}} \\ \hline T & {\color{black}{Block generation interval}} \\ (10 \text{ minutes in Bitcoin}) \end{array}$

If by some chance...
 It expresses the blockchain trilemma?

Fork rate

"Scalability, security and decentralization are not realized simultaneously."

Seoul

6/19

[IEEE ICCE 2023]

The blockchain trilemma (again)

• Termed by Vitalik Buterin, a founder of Ethereum, in 2017

• We all roughly recognize it.

The blockchain trilemma described in a formula [IEEE Blockchain 2023]

Security

We derived

Scalability (Performance)

 $\frac{B_h + B_{tx} \cdot n_{tx}}{T} \cdot \frac{1}{F} \cdot \frac{1}{F} - \frac{1}{F} = 1$ A term expressing **Decentralization**

> Larger variance of *H* gives smaller value. Biased *H* means lower degree of decentralization.

 B_h : Size of block header

 B_{tx} : Size of a transaction

 n_{tx} : Number of transactions in a block

T : Block generation interval *F* : Fork rate

 $P = \begin{pmatrix} 0 & t_{12} & \cdots & t_{1n} \\ t_{21} & 0 & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{n1} & t_{n2} & \cdots & 0 \end{pmatrix}$ $H = \begin{pmatrix} H_1 \\ H_2 \\ \vdots \end{pmatrix}$

 H_i : Ratio of hash rate of node *i*. $\Sigma H_i = 1$ t_{ij} : Propagation time of a block generated by node *i* to node *j* / size of a block

- Premise: Proof of Work, fork rate as the security index.
- Future work: Detailed discussion on decentralization, Proof of Stake.

Summary

- Tradeoffs
 - The blockchain **trilemma**
 - Tradeoff between performance and security

19

NORTH

Seoul

Hypothetical [Buterin 2017]

Proof of Work

Proof of Stake Decentra-

lization

Ethereur

yongyang

Well-grounded [Sompolinsky 2015]

Delegated

Scalability

Security

Either

• Research results in our group

Chank

Langhou

- Tool
- Scalability (performance)
- Security
- Well-grounded [IEEE Blockchain 2023] • The blockchain **trilemma** described by a formula