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Abstract. Real-world complex systems often involve interactions among
more than two nodes, and such complex systems can be represented by
hypergraphs. Comparison between a given hypergraph and randomized
hypergraphs that preserve specific properties reveal effects or dependen-
cies of the properties on the structure and dynamics. In this study, we
extend an existing family of reference models for hypergraphs to generate
randomized hypergraphs that preserve the pairwise joint degree distri-
bution and the degree-dependent two-mode clustering coefficient of the
original hypergraph. Using empirical hypergraph data sets, we numeri-
cally show that the extended model preserves the properties of the node
and hyperedge as designed.

Keywords: Hypergraph · Two-mode clustering coefficient · Configura-
tion model

1 Introduction

Networks are often used to represent complex systems that consist of nodes and
pairwise interactions (i.e., edges) among the nodes [4]. On the other hand, real-
world complex systems often involve interactions among more than two nodes
[2]. For example, in email networks, there are multiple senders and receivers of
a single e-mail [7]; in co-authorship networks, there are more than two coau-
thors for a single paper [11, 15]. Such complex systems can be represented as
hypergraphs consisting of a set of nodes and hyperedges, where each hyperedge
contains an arbitrary number of nodes.

Randomized networks that preserve specified properties are often used for
analyzing the structure and dynamics of empirical networks [12, 8, 14]. In gen-
eral, by comparing the structure or dynamics between a given network and
randomized networks that preserve specified properties of the original network,
we investigate how the preserved properties affect the structure or dynamics of
interest of the original network [5]. The dK-series [6, 8, 14] is a family of models
to generate such randomized networks. Given a network, the dK-series generates
randomized networks that preserve up to the degree of each node, the pairwise
joint degree distribution, and the degree-dependent clustering coefficient. A re-
cent study proposed the hyper dK-series, which is an extension of the dK-series
to the case of hypergraphs [10]. The hyper dK-series preserves up to the degree
distribution of the node, the pairwise joint degree distribution of the node, the
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degree-dependent redundancy coefficient of the node, and the size distribution
of the hyperedge in the original hypergraph.

In this study, we extend the hyper dK-series to preserve the pairwise joint
degree distribution of the node and the degree-dependent two-mode clustering
coefficient of the node, proposed in Ref. [13]. Using empirical hypergraph data
sets, we numerically show that the extended hyper dK-series preserves the prop-
erties of a given hypergraph as designed. This paper is an extended version of
our previous work published as an extended abstract [9]. This paper presents
definitions and notations in Section 2 and further analysis and consideration of
the experimental results in Section 4 and Fig. 1.

2 Preliminaries

We represent an unweighted hypergraph that consists of a set of nodes V =
{v1, . . . , vN } and a set of hyperedges E = {e1, . . . , eM }, where N is the number
of nodes and M is the number of hyperedges. Then, we denote by G = (V,E, E)
the bipartite graph that corresponds to the given hypergraph, where E is a set
of edges in the bipartite graph. An edge (vi, ej) is connected to each node vi and
each hyperedge ej if and only if vi belongs to the hyperedge ej in the hypergraph.
We assume that G does not contain multiple edges.

We denote by ki and sj the degree of node vi (i.e., the number of hyperedges
to which vi belongs) and the size of hyperedge ej (the number of nodes that
belong to the hyperedge ej), respectively. We also denote by k̄ and s̄ the average
degree of the node and the average size of the hyperedge, respectively.

We use the joint degree distribution and the average degree of the nearest
neighbors of nodes with degree k, which were defined in Ref. [10]. We denote by
P (k, k′) the joint degree distribution of the node [10]. We denote by knn(k) by
the average degree of the nearest neighbors of nodes with degree k [10].

We define the two-mode clustering coefficient of each node vi [13]:

ci =
(number of closed 4-paths centered on node vi)

(number 4-paths centered on node vi)
.

We denote by c̄ the average two-mode clustering coefficient of the node. We
define c(k) the degree-dependent two-mode clustering coefficient of the node as

c(k) =
1

N(k)

N∑
i=1,ki=k

ci,

where N(k) is the number of nodes with degree k.

3 Extending the hyper dK-series to the case of dv = 2.5+

The hyper dK-series generates a bipartite graph that preserves the joint degree
distributions of the node in the subgraphs of size dv ∈ {0, 1, 2, 2.5} or less and
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Table 1. Data sets. N : number of nodes, M : number of hyperedges, M: number of
edges in the corresponding bipartite graph, k̄: average degree of the node, s̄: average
size of the hyperedge, c̄: average two-mode clustering coefficient of the node, l̄: average
shortest path length between nodes.

Data N M M k̄ s̄ c̄ l̄ Refs.
email-Enron 143 1,512 4,550 31.82 3.01 0.68 2.08 [7, 3]
NDC-classes 628 816 5,688 9.06 6.97 0.31 3.53 [3]
primary-school 242 12,704 30,729 126.98 2.42 0.70 1.73 [16, 3]

the size distributions of the hyperedge in the subgraphs of size de ∈ {0, 1} or less
in the given bipartite graph [10]. We extend the model to the case of dv = 2.5+
and de ∈ {0, 1} to generate a randomized bipartite graph that preserves the joint
degree distribution and the degree-dependent two-mode clustering coefficient of
the node in addition to the average or distribution of the hyperedge’s size.

In the model with dv = 2.5+ and de ∈ {0, 1}, we first generate a randomized
bipartite graph with de = 2 and given de using the original hyper dK-series.
Then, we repeat the rewiring process for the generated bipartite graph [10]. We
select a pair of edges, (vi, ej) and (vi′ , ej′), in the bipartite graph such that i ̸= i′,
j ̸= j′, and ki = k′i uniformly at random. We replace (vi, ej) and (vi′ , ej′) by
(vi, ej′) and (vi′ , ej) if and only if the normalized L1 distance defined as

D2.5+ =

∑M
k=1 |c′(k)− c(k)|∑M

k=1 c(k)

decreases, where c′(k) represents the degree-dependent two-mode clustering co-
efficient of the node for the hypergraph after rewiring the edge-pair. The rewiring
procedure preserves the pairwise joint degree distribution of the node and the
size of each hyperedge. We repeat the rewiring attempts R = 500M times.

4 Experiments

We apply the extended hyper dK-series to three empirical hypergraphs. The
email-Enron hypergraph is an email network [7, 3], where nodes are email ad-
dresses and hyperedges are sets of all addressees of senders and receivers of
each email. The NDC-classes hypergraph is a drug network [3], where nodes are
class labels and hyperedges are sets of class labels applied to each drug. The
primary-school hypergraph is a contact network [16, 3], where nodes are people
and hyperedges are sets of people who contact each other face-to-face. Table 1
shows the properties of the largest connected component for the data sets.

Table 2 shows the distance in five properties between the original hypergraph
and the hypergraphs generated by the hyper dK-series with dv ∈ {0, 1, 2, 2.5, 2.5+}
and de ∈ {0, 1}. We calculated the Kolmogorov-Smirnov distance between the
cumulative distributions of the degree distribution of the node for the original hy-
pergraph and the generated hypergraphs. For the other properties, we calculated
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Table 2. Distance between the empirical hypergraphs and those generated by the
reference models.

Data (dv, de) P (k) knn(k) c(k) P (s) P (l)

email-Enron (0, 0) 0.434 0.420 0.781 0.158 0.595
(1, 0) 0.000 0.202 0.206 0.160 0.491
(2, 0) 0.000 0.012 0.207 0.160 0.429
(2.5, 0) 0.000 0.013 0.222 0.160 0.416
(2.5+, 0) 0.000 0.013 0.023 0.160 0.368
(0, 1) 0.406 0.412 0.772 0.000 0.647
(1, 1) 0.000 0.200 0.197 0.000 0.491
(2, 1) 0.000 0.035 0.191 0.000 0.452
(2.5, 1) 0.000 0.027 0.198 0.000 0.427
(2.5+, 1) 0.000 0.032 0.026 0.000 0.414

NDC-classes (0, 0) 0.614 0.741 0.962 0.252 1.585
(1, 0) 0.000 0.388 0.368 0.248 1.322
(2, 0) 0.000 0.046 0.208 0.248 0.799
(2.5, 0) 0.000 0.045 0.201 0.248 0.712
(2.5+, 0) 0.000 0.043 0.035 0.248 0.467
(0, 1) 0.597 0.751 0.951 0.000 1.612
(1, 1) 0.000 0.389 0.328 0.000 1.417
(2, 1) 0.000 0.022 0.158 0.000 0.749
(2.5, 1) 0.000 0.019 0.156 0.000 0.722
(2.5+, 1) 0.000 0.021 0.023 0.000 0.609

primary-school (0, 0) 0.380 0.429 0.848 0.303 0.856
(1, 0) 0.000 0.089 0.121 0.307 0.707
(2, 0) 0.000 0.006 0.111 0.307 0.374
(2.5, 0) 0.000 0.005 0.109 0.307 0.371
(2.5+, 0) 0.000 0.007 0.008 0.307 0.313
(0, 1) 0.368 0.451 0.868 0.000 0.535
(1, 1) 0.000 0.089 0.126 0.000 0.434
(2, 1) 0.000 0.014 0.166 0.000 0.246
(2.5, 1) 0.000 0.015 0.180 0.000 0.218
(2.5+, 1) 0.000 0.014 0.010 0.000 0.276

the normalized L1 distance between the properties for the original hypergraph
and the generated hypergraphs.

We make the following observations for the three empirical hypergraphs.
First, the distances for P (k) is equal to 0 for dv = 2.5+ and de ∈ {0, 1}, as ex-
pected. Second, the distances for knn(k) are quite small values in the models with
dv ∈ {2.5, 2.5+} and de ∈ {0, 1}, which indicates that the models approximately
preserve knn(k). Third, the distance for c(k) is much smaller in the model with
dv = 2.5+ than that in the model with dv = 2.5 for any de ∈ {0, 1}. Fourth,
the model with (dv, de) = (2.5+, 0) and de = 0 has a somewhat distance for
P (s) but that with (dv, de) = (2.5+, 1) has no distance for P (s), as expected.
Finally, the model with dv = 2.5+ often preserves more accurately P (l) than
that with dv = 2.5 for any de = {0, 1}, whereas the distance is still not small in
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Fig. 1. Structural properties of the email-Enron hypergraph and the hypergraphs gen-
erated by the reference models. The figures in the left column show the results for
de = 0. The figures in the right column show the results for de = 1.

both models. Figure 1 shows knn(k), c(k), and P (l) for the original email-Enron
hypergraph and hypergraphs generated by the hyper dK-series.

5 Conclusion

We extended the hyper dK-series to generate a randomized hypergraph that
preserves the pairwise joint degree distribution and the two-mode clustering
coefficient. We applied the extended hyper dK-series to three empirical hyper-
graphs. We numerically showed that the model with dv = 2.5+ preserves exactly
the degree distribution of the node, approximately the pairwise joint degree dis-
tribution of the node, and approximately the degree-dependent two-mode clus-
tering coefficient. We also found that the model with dv = 2.5+ often preserves
more accurately the distribution of the shortest-path length than the existing
model with dv = 2.5. Future work includes the application of the extended hyper
dK-series to simulations of dynamical processes in hypergraphs [1].
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