
Quick Notification of Block Generation
Using Bloom Filter in a Blockchain

Tsuyoshi Hasegawa
Kyoto University

Kyoto, Japan

Akira Sakurai
Tokyo Institute of Technology

Tokyo, Japan

Kazuyuki Shudo
Kyoto University

Kyoto, Japan

Abstract—Forks in a blockchain sacrifice security. In this
paper, we propose a protocol for quickly propagating block
generation notifications in the blockchain network quickly to
reduce the fork rate. Block generation notifications contain a
Bloom filter that represents transactions in the generated block.
Thus, when nodes receive a block generation notification, they can
start mining the next block. In experiments in which a simulator
is used, we compared the propagation time of a block generation
notification with that of a block in the existing protocol. As a
result, the propagation time of the 50 %ile is 41.1 % of an
existing protocol, the 90 %ile is 39.2 % of the existing protocol,
and the fork rate calculated from the average propagation time
is 40.8 % of the existing protocol.

Index Terms—blockchain, block propagation, fork rate

I. INTRODUCTION

Blockchain is a decentralized system that is difficult to
tamper with and utilized on a cryptocurrency basis. Currently,
a disadvantage of blockchains is that they can only approve
few transactions in a unit of time. Specifically, the perfor-
mance of Bitcoin [1] transaction approval was initially only
7 TPS (transactions / sec). If the block generation interval is
shortened to resolve the lack of TPS, the blockchain security
is sacrificed [2]. The solution increases the possibility of a
new block being generated by a node that has not received
the generated block and divergence in the blockchain. The
divergence in the blockchain is referred to as a fork and the rate
of fork occurrence is referred to as a fork rate. By shortening
the block propagation time, the fork rate can be reduced and
the block generation interval can be shortened.

We propose a protocol that quickly propagates a block
generation notification, which informs nodes that a block has
been generated. We assume blockchains in which a fork can
occur because all nodes probabilistically generate blocks.

In Section II, we show related research on block propagation
between nodes. In Section III, we describe the proposed
protocol. In Section IV, we show the results of simulation
experiments. In Section V, we summarize our research.

II. RELATED RESEARCH

In the blockchain, the block consists of a header and a set
of transactions. Nodes mined the block, and if they succeeded,
transmitted the block to their neighbor nodes. For this node-to-
node transfer protocol, first, we describe the normal node-to-
node protocol (legacy protocol). Second, we describe Compact

Block Relay (CBR) [3] and Graphene [4], which are efficient
block transfer protocols between nodes.

A. Legacy Protocol

In the legacy protocol, a block itself is transmitted between
nodes. First, the block sender node sends an inventory (inv)
message that informs which block will be transmitted to a
receiver node, and the receiver sends a getdata message
if the block is needed. The sender transmits the block itself
when receiving the getdata message. The size of the block
is limited by 1 MiB [5].

B. Compact Block Relay

In the Compact Block Relay (CBR), a compact block that
consists of a header and set of transaction ids is sent instead
of a full block. Transactions have been sent to the blockchain
network and nodes collect them in their transaction pool
(mempool), thus, the node receiving the compact block can
reconstruct the full block using the set of transaction ids. If
the receiver does not have all transactions in the full block,
the node request lacks transactions for the sender. The size
of the compact block is smaller than that of the full block,
approximately 18 KiB [6], thus it can be transmitted at a faster
rate than the full block.

C. Graphene

Graphene is a protocol that uses two probabilistic data struc-
tures, the Bloom filter [7] and Invertible Bloom Lookup Table
(IBLT) [8], to efficiently encode the transactions contained
in a block. The sender transmits a Bloom filter S and IBLT
I that encode the transactions in the block, and the receiver
tries to decode them. If the receiver succeeds in decoding, the
node can know all transactions in the block. In the case of a
decoding failure, the receiver sends another Bloom filter R,
and the sender sends another IBLT J and expectes to lack
transaction set C. Then, the receiver tries to decode IBLT
J . If the second attempt also fails, a normal block transfer
is performed. In Graphene, the size of the data transferred
between nodes is less than the CBR in total.

III. PROPOSED PROTOCOL

This section describes the proposed protocol to reduce the
fork rate in blockchains.

In this paper, we propose a protocol to quickly notify
the nodes in the blockchain network that a block has been

Proc. 28th IEEE Symposium on Computers and Communications 
(IEEE ISCC 2023), July 2023



TABLE I
STRUCTURE OF A BLOCK GENERATION NOTIFICATION (BLOCK HEADER).

Element Description
Transaction filter Bloom filter with UTXOs utilized in

transactions in the generated block as
an element

Prerequisite block indices Indices of prerequisite blocks at gener-
ated block

Version Software / protocol version number
Previous Block Hash Hash of the parent block
Merkle Root Root hash of the Merkle Tree for all

transactions in the block
Timestamp Generation time of the block
Difficulty Target Difficulty of proof of work during

block generation
Nonce Counters used in proof of work

generated. We refer to this notification as a block generation
notification. The block generation notification includes infor-
mation about the generated block, and the nodes that receive
the notification start the next mining based on the notification.
The rapid propagation of block generation notifications and the
notion that the nodes that receive them start the next mining
with the block corresponding to the notification as its parent
reduces the fork rate. Hence, a space-efficient data structure,
the Bloom filter, is selected to represent the information of
the generated block and is included in the block generation
notification.

Table I shows the structure of a block generation notifica-
tion. In the proposed protocol, the block header is extended to
be a block generation notification. The structure is similar to
the Bitcoin header, with the exception that a transaction filter
and prerequisite block indices are added. The miner mines
using the extended header and propagates the header as a
block generation notification when the block is successfully
generated. In this way, the node receiving the block generation
notification can check the metadata of the generated block and
confirm that the creator of the block generation notification has
indeed successfully mined the proof of work. The transaction
filter is discussed in more detail in Subsection III-A, and the
prerequisite blocks are discussed in more detail in Subsection
III-B. Figure 1 shows a summary of the proposed protocol.

A possible method for implementing block generation no-
tifications in Bitcoin is to include them in transactions made
by miners and propagate them to the blockchain network.

A. Transaction Filter

The transaction filter Fh is a Bloom filter whose elements
are the UTXOs consumed by the transactions in the generated
block Bh. A node that receives a block generation notification
Nh determines the UTXOs consumed by each transaction in
its own transaction pool using transaction filter Fh. If all
consuming UTXOs for each transaction are negative, the node
determines that it is not included in the generated block Bh

and includes it in the next mining.
Bloom filters have the potential for false positives. Ways to

address false positives are discussed in Subsection III-B.

Algorithm 1 Validation of block generation notification Nh

1: Validate one previous block generation notification Nh−1.
2: Validate blocks activated by Nh.
3: Validate each header element of Nh (no validation of

the Merkle root, otherwise the same as Bitcoin header
validation).

B. Activation of Blocks

Bloom filters have the problem of false positives, which
means that transactions that are false positives by a certain
transaction filter can no longer be included in the mining. A
transaction that is a false positive by a transaction filter Fh of
a certain height h can be determined to be a false positive
by checking transactions at the corresponding same height
block Bh. The transaction filter Fh can be inactivated by block
Bh. Ensuring the existence of block Bh and inactivating the
corresponding transaction filter Fh is referred to as enabling
block Bh. Activating a block held by each node at mining
inactivates the corresponding transaction filter and solves the
problem of false positives.

However, the block propagation status is not the same for
each node. When verifying block Bh, each node needs to know
which blocks were activated when the block Bh was generated.
Hence, the proposed method is to include in the block gener-
ation notification the information of the blocks that each node
has received and for which the corresponding transaction filter
has been inactivated at mining. This information is referred to
as the prerequisite block indices. By using the prerequisite
block indices in block generation notification Nh of height
h and activating these blocks, the status of the active blocks
at height h can be identified for all nodes. Conversely, the
block is unconfirmed until it is activated by a block generation
notification.

A possible attack by malicious nodes is to propagate only
block generation notification Nh and not block Bh upon
successful mining of height h. By this attack, the correspond-
ing transaction filter Fh cannot be inactivated because block
Bh cannot be propagated to ensure that transactions that are
positive due to Fh can not be included in the mining. To
counter this attack, a time limit is set on block activation.
Specifically, if block Bh is not activated for b consecutive
blocks, i.e., if block Bh is not included in the prerequisite
block information of a block generation notification of height
h + 1 to h + b, the transaction filter Fh is disabled and Bh

cannot be activated thereafter. Since block Bh can no longer
be activated, all transactions that were positive by transaction
filter Fh are included in the mining. Subsection III-F describes
how the system-wide parameter b is determined.

C. Validation of Block Generation Notification

Algorithm 1 shows the algorithm for validation of the
block generation notification, which is performed by the node
receiving block generation notification Nh of height h.

In the validation of block generation notification Nh, first,
one previous block generation notification Nh−1 is checked

Proc. 28th IEEE Symposium on Computers and Communications 
(IEEE ISCC 2023), July 2023



Header
(BGN)

Tx
Tx
..

.

Block

Block Generation 
Notification (BGN)

Header
(BGN)

Tx
Tx
..

.

Header
(BGN)

Tx
Tx
...

Transaction
filter

Transaction 
filter

Block Height h+1 h + nh - 1

Transaction
filter

Header
(BGN)

..

.

h-b

Transaction
filter

Prerequisite 
Blocks 
indices

Header
(BGN)

Tx
Tx..

.

h 

Transaction
filter

validate activate

Tx
inactive 

transaction
active

transaction

Tx
unconfirmed
transaction

Tx
Transaction

filter
inactive

filter

Transaction
filter

active
filter

Tx

Prerequisite 
Blocks 
indices

Prerequisite 
Blocks 
indices

Prerequisite 
Blocks 
indices

Prerequisite 
Blocks 
indices

Tx

Header 
elements

Header 
elements

Header 
elements

Header 
elements

Header 
elements

Header 
elements
Bitcoin’s 

header elements

Fig. 1. Summary of the proposed protocol.

Algorithm 2 Validation of block Bh

1: Block generation notification Nh id validated.
2: All transactions in block Bh are checked to ensure that

they pass through the integration filter Ih.
3: Each transaction in block Bh id validated.

Algorithm 3 Creation of integration filter Ih
1: An integration filter Ih = an empty Bloom filter that is a

bit array, all set to 0.
2: r = h
3: while r ≥ 0 do
4: if Fr is not inactivated then
5: Th = Unite(Th, Fr) ▷ Unite is a function that

takes the logical OR of each bit.
6: end if
7: r = r − 1
8: end while
9: return Th

to ensure that it has been validated. Thus, to validate Nh,
it is recursively required that all previous block generation
notifications have been validated. Second, the prerequisite
block indices in Nh are checked, and the activated blocks
are validated. If the node receiving Nh has not received these
blocks, the node requests them for the Nh sender. Last, each
header element of Nh are validated. In this validation, the
Merkle root is not validated because block Bh is required for
this validation; otherwise, the same is true for the validation
of the Bitcoin header. Block Bh is not validated in the Nh

validation.

D. Validation of Block

Algorithm 2 shows the algorithm for validation of block Bh

of height h. The node receiving a block generation notification
higher than height h activating block Bh validates block Bh.

In the validation of block Bh, first, the corresponding block
generation notification Nh is validated. Second, the next step
is to check that all transactions in block Bh pass through the
integration filter Ih. The integration filter is the integration of
the active transaction filters at height h, and the algorithm for
creating the integrated filter is given by Algorithm 3. Last,
each transaction in block Bh is validated. The validation of
one previous block Bh−1 is not performed because in the
proposed protocol, blocks are activated by a block generation
notification, and the prerequisite block when block Bh was
generated is indicated in block generation notification Nh and
is validated in the first Nh verification (Algorithm 1).

E. Mining

Algorithm 4 shows the algorithm by which the node receives
block generation notification Nh and starts the next mining.

When ntheode that received a block generation notification
Nh starts the next mining, it validates the received Nh (Algo-
rithm 1). Then, if any block Bi up to the previous b blocks
already received has not yet been activated, the corresponding
transaction filter Fi is inactivated, and the prerequisite block
indices are updated (there can be multiple blocks to be
activated). Subsequently, an integrated filter Ih is generated
(Algorithm 3). The generated integrated filter Ih is then used to
determine transactions in the transaction pool of the receiver.
The UTXOs consumed by each transaction are determined by
the integrated filter Ih and at least one positive transaction
is excluded from mining. From the remaining transactions,



Algorithm 4 Mining
1: Block generation notification Nh is validated.
2: Transaction filters corresponding to blocks that have not

been activated up to b blocks already received are inacti-
vated.

3: References of blocks that have not been activated up to b
blocks already received are added to the prerequisite block
indices.

4: An integrated filter Ih is created.
5: Transactions in the transaction pool are determined by Ih.
6: Transactions included in the next block Bh+1 are deter-

mined.
7: A transaction filter Fh+1 is created.
8: The transaction filter Fh+1 and prerequisite block indices

in the block header are included, and then mining is
started.

9: Mining success.
10: The block header of the generated block Bh+1 is propa-

gated as a block generation notification.
11: Block Bh+1 is propagated.

a new transaction filter Fh+1 is created to determine the
transactions to be included in the next block Bh+1. Mining is
then started by including the transaction filter and prerequisite
block indices in the extended block header. If the mining is
successful, the block header of the generated block Bh+1 is
propagated as block generation notification Nh+1 and then
block Bh+1 is propagated.

F. Size of a transaction filter

We consider the size of a transaction filter included in the
block generation notification. The transaction filter should be
as small as possible to minimize the propagation time of the
block generation notification.

The transaction filter Fh is inactivated if the corresponding
block Bh is not activated for b blocks (Subsection III-B).
Hence, the number of active transaction filters is highest
when b consecutive blocks have not been activated by block
generation notifications, and the number is b. In this paper,
we set the false positive rate of the Bloom filter so that the
ratio of the highest number of false positive transactions to
the total number of transactions that have not been included
in the generated block and should be available for mining is
less than or equal to the parameter r. The size of the smallest
Bloom filter is −n ln f

ln2 2
bits when the number of filter elements

is n and the false positive rate is f .
The average number of UTXOs consumed by a transaction

is three [9]. We use this figure to determine the size of the
Bloom filter. When at least one of the consuming UTXOs
is positive, the transaction is not included in the next mining.
Therefore, the probability f ′ of an originally usable transaction
becoming a false positive transaction is

f ′ = 1− (1− f)3, (1)

where f is the false positive rate of the Bloom filter.

Fig. 2. Size of the Bloom filter when r is varied.

For the ratio of false positive transactions to the total number
of transactions that should be available for mining to be less
than or equal to r, the inequality satisfied by f ′ is

b∑
k=1

f ′(1− f ′)k−1 ≤ r. (2)

Substituting Equation (1) into inequality (2) and rearranging,
we obtain

f ≤ 1− (1− r)
1
3b . (3)

The false positive rate and size in a Bloom filter is a trade-off.
Thus, the false positive rate of the Bloom filter is maximized
to be as small as possible. Thus, the false positive rate of the
Bloom filter is

f = 1− (1− r)
1
3b . (4)

We describe parameter b. From Equation (4), f decreases
as b increases when r is fixed. Since the size of a Bloom
filter increases as the false positive rate decreases, the size
increases as b increases. Therefore, to make the size as small
as possible, we obtain the smallest acceptable b. Malicious
nodes can inactivate the b + 1 previous block by creating
blocks without activating this block b consecutive times. If
b is small, the possibility of the success of such an attack
increases. We set b such that the possibility that malicious
nodes succeed in generating block b consecutive times is lower
than the possibility of a successful double-spending attack. The
possibility that malicious nodes succeed in generating blocks
b consecutive times is hb when h is the hash rate of malicious
nodes. With reference to the possibility of a successful double-
spending attack depending on the hash rate by Chaudhary et
al. [10], b = 4 is sufficient.

Figure 2 shows the size of the transaction filter when r is
varied, b = 4, and the number of transactions included in a
block is 2000. The transaction filter size is 7.181 KiB when
r = 0.1, and 4.391 KiB when r = 0.5.

The size of the block generation notification is sufficiently
small; thus, the proposed protocol does not use inv messages
when sending block generation notifications.

Proc. 28th IEEE Symposium on Computers and Communications 
(IEEE ISCC 2023), July 2023



G. Impact of attacks and countermeasures

Possible attacks on the proposed method, their impact and
countermeasures are described.

1) Attacks that do not propagate blocks: As described in
Sections III-B and III-F, when a block is generated, there is a
possible attack where only the block generation notification
is propagated and the block is not propagated. To address
this attack, blocks that have not been activated for b blocks
inactivate the corresponding transaction filter (Section III-B).
However, since the corresponding transaction filter is not
inactivated until b blocks have been accumulated, there is a
problem that for this period the transactions made positive by
that transaction filter cannot be included in the mining. We
propose a method for setting the size of the transaction filter
so that the number of worst-case false positive transactions is
below a certain percentage.

2) Attacks that do not activate blocks: As described in
Section III-F, a possible attack occres when malicious nodes
inactivate the b+1 previous block by creating blocks without
activating this block b consecutive times. Since the success
probability of this attack decreases as the parameter b in-
creases, in this paper the value of the parameter b is set such
that the success probability of this attack is lower than that of
the double-spending attack.

3) Attacks that keep certain transactions positive: It is
possible to prevent certain transactions from being used by
creating a transaction filter such that certain transactions are
positive when malicious nodes succeed in mining. This step
could lead to an attack whereby successful mining occurs
again before the b blocks stack up, keeping certain transactions
positive and preventing them from being included in the block.
This attack has a trade-off with the attack in which the
blocks above are not propagated, as the probability of success
increases as b increases.

4) Attacks that propagate a malformed transaction filter:
By propagating a malformed transaction filter such that all
UTXOs are positive, all transactions become unusable. To ad-
dress this attack, a possible approach is to limit the percentage
of bits with a value of 1, assuming that the initial value of the
Bloom filter is 0 and that the positive bits have a value of 1.
It is possible that the number of bits with a value of 1 may
exceed the limit even for nonmalicious nodes by chance. In
this case, we allow the reconfiguration of the Bloom filter and
include information in the notification indicating the number
of reconfigurations.

IV. EXPERIMENT

We show that block generation notifications in the proposed
protocol quickly propagate. A simulator is used to measure the
propagation time of the proposed protocol and compare related
studies.

A. Experimental Method

We use SimBlock [11], [12] a blockchain network simulator
for experiments. The Legacy protocol and CBR have been

TABLE II
NETWORK PARAMETERS.

Number of nodes 10000
Block generation interval 10 min
Size of block 1.0 MiB
Distribution of hash rate Normal distribution
Average of hash rate 400000 / sec
Variance of hash rate 100000 / sec

TABLE III
CBR PARAMETERS.

Compact block size 18 KiB
Ratio of churn nodes 0.97
Block reconstruction failure rate in churn nodes 0.27
Block reconstruction failure rate in control nodes 0.1

implemented in SimBlock, so Graphene and the proposed pro-
tocol are additionally implemented, and the propagation time
is measured. For the proposed protocol, the propagation times
of the block generation notification and the block body are
measured. The propagation time of the block generation notifi-
cation is employed for comparison with other methods because
miners stop the current mining and start the next mining at
the time of receiving the block generation notification. Since
the experiments are intended to reveal the fork rate for each
protocol, it is sufficient to consider only the propagation time
of the block generation notification for the proposed protocol.
Table II shows the parameters of the blockchain network in
the simulation. Network parameters other than those in Table
II include node distribution, bandwidth, and network delay,
the values of which are obtained from Nagayama et al. [6].

1) Implemention of CBR: Table III shows the CBR pa-
rameters in SimBlock. Control nodes are nodes that always
participate in the blockchain network, while churn nodes are
nodes that repeatedly join and leave the blockchain network.
Churn nodes and control nodes have different rates of block
reconstruction failure in the CBR, and the distribution of
the number of missing transactions in the event of block
reconstruction failure is also different for control nodes and
churn nodes. Nagayama et al. [6] calculate the cost of sending
the missing transactions based on each distribution. These
parameters are utilized in this experiment.

2) Implemention of Graphene: Table IV shows the parame-
ters of Graphene in SimBlock implemented in this experiment.
The number of transactions per block and the number of
transactions in the transaction pool of a node are referred to
in [5]. The ratio of churn nodes is the same as the CBR
(Table III). From these parameters, we calculated the size
of the Bloom filters S, R, and IBLT I and J , as described
in subsection II-C. For simplicity, the size of the missing
transactions in the CBR is applied. The decoding of IBLT I
is assumed to succeed 100 % of the time if the percentage of
the number of missing transactions is less than 2 % (scenario
1) since the decoding will almost succeed in scenario 1. The
decoding succeed probability is assumed to be 0 % when the
percentage of missing transactions exceeds 2 % (scenario 2)

Proc. 28th IEEE Symposium on Computers and Communications 
(IEEE ISCC 2023), July 2023



TABLE IV
GRAPHENE PARAMETERS.

Number of transactions per block 2000
Number of transactions in a transaction pool (mempool) 4000
Bloom filter S size 2.434 KiB
IBLT I size 0.901 KiB
Bloom filter R size 1.453 KiB
IBLT J size 1.407 KiB
Probability of 1st decoding success (scenario 1) 100 %
Probability of 1st decoding success (scenario 2) 0 %
Probability of 2nd decoding success 100 %

TABLE V
PROPOSED PROTOCOL PARAMETERS.

Block generation notification size 7.272 KiB (r = 0.1) or
4.468 KiB (r = 0.5)

Block size 1.0 MiB
Methods of block propagation CBR
Depth of prerequisite block 1, 2 or 3

since the decoding almost fails in scenario 2. The success
probability of the second decoding, i.e. the decoding of IBLT J
is assumed to always succeed, as it is almost 100 % according
to Ozisik et al. [4].

3) Implementation of the Proposed Protocol: Table V
shows the parameters of the proposed protocol implemented
in this experiment. The size of a block generation notification
is the sum of the size of a transaction filter described in
Section III and the block header of Bitcoin. The prerequisite
block indices are disregarded because they are very small.
Parameter r is the ratio of the highest number of false positive
transactions to the total number of transactions that have not
been included in the block and should be available for mining.
In this experiment, we set r = 0.1 and, 0.5 and compare.
Mining is assumed to be a constant depth block on all nodes,
and the compared depth is 1 to 3. Block bodies are propagated
with CBR.

B. Results and Consideration

We describe the comparison of propagation times according
to the parameters of the proposed protocol and those between
each protocol. The end block height of the simulation is
100,000 blocks.

1) Comparison according to the parameters of the proposed
protocol: Table VI shows the comparison of the propagation
times of the block generation notification at r = 0.1 and
0.5. The depth of a prerequisite block is 1. The size of the
block generation notification is 7.272 KiB when r = 0.1 and
4.468 KiB when r = 0.5; consequently, the propagation time
is smaller for r = 0.5 than for r = 0.1.

Table VII compares the propagation times of the block
generation notification and the number of requests for the
prerequisite block when the depth of the prerequisite block
is varied. The value of the parameter r is 0.1. The difference
between the average propagation time of the block generation
notification for depths 1 and 2 was 9 ms, while for depths 2
and 3 the average propagation times were equal. The larger
the depth of a prerequisite block is, the fewer times the

TABLE VI
PROPAGATION TIME OF BLOCK GENERATION NOTIFICATION BY R.

r = 0.1 r = 0.5
50 %ile propagation time [ms] 274 242
90 %ile propagation time [ms] 453 418
100 %ile propagation time [ms] 634 601
Average propagation delay [ms] 302 269

TABLE VII
PROPAGATION TIME OF BLOCK GENERATION NOTIFICATION BY DEPTH OF

A DEPENDENT BLOCK BODY.

Depth 1 Depth 2 Depth 3
50 %ile propagation time [ms] 274 267 267
90 %ile propagation time [ms] 453 443 443
100 %ile propagation time [ms] 634 564 570
Average propagation delay [ms] 302 293 293
Requests number for prerequisite blocks 3802710 133445 118951

prerequisite block was requested, as the block body was spread
out in the blockchain network, and the average propagation
time was correspondingly shorter. In the real situation, the
depth of a prerequisite block is changed by the spread of the
block in the blockchain network. However, the impact of the
depth of a prerequisite block body on the block propagation
time is small.

2) Comparison between each protocol: Figure 3 and Table
VIII show the propagation delay for each protocol. In the
proposed protocol, the parameter r = 0.1 and the depth of a
prerequisite block is 1 and the propagation time of the block
generation notification is measured. The propagation delay
for the proposed protocol was the smallest in all percentiles,
followed by Graphene and the CBR, with the legacy protocol
having the largest propagation time. Compared to Grapheene,
the propagation time of the 50 %ile, 90 %tile, and 100 %tile
for the proposed protocol is 41.1 %, 39.2 %, 27.8 %, respec-
tively, and the average is 40.8 %.

C. Network communication amount

Figure 4 shows the expected value of the total message
size for the transmission of a block or a block generation
notification between two nodes for each protocol, where the
parameters of each protocol are shown in Section IV-A. For the
proposed protocol, two separate message sizes are presented:
a message for the block generation notification only, and an
other message for the block and block generation notification.
The message size of the block generation notification is
important in terms of the fork rate. The expected total size of
the messages between two nodes per hop is 7.3 KiB, with the
smallest block generation notification of the proposed protocol,
followed by Graphene with 13 KiB and the CBR with 43 KiB.
Legacy protocols were the largest with 1 MiB.

D. Fork rate

The fork rate is calculated as F = TW /T ,where F is the
fork rate, TW is the average block propagation time weighted
by the hash rate, and T is the block generation interval [13].
Table IX shows TW and the fork rate calculated by each TW .

Proc. 28th IEEE Symposium on Computers and Communications 
(IEEE ISCC 2023), July 2023



Fig. 3. Propagation time for each percentile.

TABLE VIII
PROPAGATION TIME.

Proposed Graphene CBR legacyprotocol
50 %ile propagation time [ms] 274 666 746 6182
90 %ile propagation time [ms] 453 1154 1241 8633
100 %ile propagation time [ms] 634 2282 2367 15326
Average propagation time [ms] 302 741 828 6478

Fig. 4. Expected message size between two nodes per hop.

Figure 5 shows the fork rate. We measure the propagation time
of the block generation notification for the proposed protocol.
These results show that the proposed method had the best fork
rate, which is 40.8 % of that of Graphene.

V. CONCLUSION

In this paper, we proposed a protocol for quickly propagat-
ing block generation notification using a Bloom filter in the
blockchain network to reduce the fork rate. In experiments in
which a simulator is used, the propagation time of the 50 %ile
was 41.1 % of an existing protocol, that of the 90 %ile was
39.2 % of the existing protocol, and the fork rate calculated
from the average propagation time is 40.8 % of the existing
protocol. Although shortening the block generation interval
increases the fork rate [2], it can be offset by suppressing
the fork rate using the proposed protocol, so that the block
generation interval can be shortened while maintaining the fork
rate. Arakawa et al. [14] proposed such a method.

Fig. 5. Fork rate.

TABLE IX
FORK RATE

Proposed protocol Graphene CBR legacy
TW [ms] 302 741 828 6478
F 0.000503 0.00123 0.00138 0.0107

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP21H04872.

REFERENCES

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Decentralized business review, page 21260, 2008.

[2] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in bitcoin. In Financial Cryptography and Data Security:
19th International Conference, FC 2015, San Juan, Puerto Rico, January
26-30, 2015, Revised Selected Papers 19, pages 507–527. Springer,
2015.

[3] Matt Corallo. Bip 152: Compact block relay, 2016.
https://github.com/Bitcoin/bips/blob/master/bip-0152.mediawiki.

[4] A Pinar Ozisik, Gavin Andresen, Brian N Levine, Darren Tapp, George
Bissias, and Sunny Katkuri. Graphene: efficient interactive set reconcil-
iation applied to blockchain propagation. In Proceedings of the ACM
Special Interest Group on Data Communication, pages 303–317. 2019.

[5] Blockchain.com, (Accessed on 10/12/2022). https://www.blockchain.
com/explorer/charts.

[6] Ryunosuke Nagayama, Ryohei Banno, and Kazuyuki Shudo. Identifying
impacts of protocol and internet development on the bitcoin network.
In 2020 IEEE Symposium on Computers and Communications (ISCC),
pages 1–6. IEEE, 2020.

[7] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[8] Michael T Goodrich and Michael Mitzenmacher. Invertible bloom
lookup tables. In 2011 49th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 792–799. IEEE, 2011.

[9] Bitcoin visuals, (Accessed on 10/12/2022). https://Bitcoinvisuals.com/
chain-input-count-tx.

[10] Kaylash C Chaudhary, Vishal Chand, and Ansgar Fehnker. Double-
spending analysis of bitcoin. In Pacific Asia conference on information
systems. Association for Information Systems, 2020.

[11] Yusuke Aoki, Kai Otsuki, Takeshi Kaneko, Ryohei Banno, and Kazuyuki
Shudo. Simblock: A blockchain network simulator. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 325–329. IEEE, 2019.

[12] Ryohei Banno and Kazuyuki Shudo. Simulating a blockchain network
with simblock. In 2019 IEEE international conference on blockchain
and cryptocurrency (ICBC), pages 3–4. IEEE, 2019.

[13] Akira Sakurai and Kazuyuki Shudo. Impact of the hash rate on
the theoretical fork rate of blockchain. In 2023 IEEE International
Conference on Consumer Electronics (ICCE), pages 1–4. IEEE, 2023.

[14] Masumi Arakawa and Kazuyuki Shudo. Block interval adjustment based
on block propagation time in a blockchain. In 2022 IEEE International
Conference on Blockchain (Blockchain), pages 202–207. IEEE, 2022.

Proc. 28th IEEE Symposium on Computers and Communications 
(IEEE ISCC 2023), July 2023




