
A Distributed Clock Synchronization Protocol
for Proof of Stake Blockchains

Yuya Miki†, and Kazuyuki Shudo†,††
†Tokyo Institute of Technology, Tokyo, Japan

††Kyoto University, Kyoto, Japan

Abstract—In a Proof of Stake (PoS) blockchain, all nodes
need to be able to recognize approximately synchronized clocks.
A PoS blockchain relies on external clocks, and each node
synchronizes its local clock according to an external clock using
Network Time Protocol (NTP) or a similar protocol. However,
this external dependence is undesirable because it reduces the
autonomy, sustainability and trustless nature of the blockchain.
This paper presents a clock synchronization protocol for slot-
based PoS blockchains. The proposed protocol estimates the block
propagation time to ensure that the synchronization is closer to
that of a real-world clock. In addition, the proposed method
considers the clock drift and clock adjustment frequency to
achieve more accurate synchronization. Simulation experiments
show that the proposed method can synchronize with a time that
is closer to that of a real-world clock and with higher accuracy
than existing methods.

Index Terms—Blockchain, Clock synchronization, Block prop-
agation time, Ethereum

I. INTRODUCTION

A blockchain is a type of distributed ledger technology that
records the transfer of asset rights. A transaction represents the
transfer of asset rights, and blocks are used to store a number
of transactions. The blocks are connected by hashed values,
which prevents the falsification of past data. Blockchains allow
values to be transferred in the absence of a trusted third-
party. Bitcoin and Ethereum are two prominent examples of
blockchains [1], [2].

In a Proof of Stake (PoS) blockchain, a mechanism is
needed to ensure that each node in the network recognizes the
same round. Because typical crystal real-time clocks (RTCs)
are not very accurate, for each node to recognize a round
based on its own local clock, a high-precision clock such
as an atomic clock or adjustment with an external clock
synchronization protocol is necessary. However, high-precision
clocks are expensive, and imposing hardware requirements on
nodes raises the barrier to participating in the protocol.

As a result, many PoS blockchains use external clock
synchronization protocols, such as Network Time Protocol
(NTP) [3], to synchronize the time with a local clock. For
example, in Ethereum, the most popular client software, Go
Ethereum (Geth) [4], imposes a local clock requirement on
each node that joins the network. This requirement is based
on the time obtained by NTP. However, several problems have
been reported as a result of reliance on NTP, which may
compromise the security of the system. In addition, reliance

This work was supported by JSPS KAKENHI Grant Number JP21H04872.

Time

Block BlockBlock Block・・・

slot

epoch

Fig. 1: Epoch and Slot in Ethereum 2.0.

on external protocols reduces the viability of the blockchain
protocol as an autonomous decentralized system.

Thus, in this paper, we propose a new clock synchronization
protocol for slot-based PoS blockchains. The proposed method
considers the effects of the block propagation time, clock drift,
and clock adjustment frequency, which have not been fully
considered in existing methods, to achieve synchronization
closer to real-world clocks and with higher accuracy than
existing methods. The proposed method can be implemented
without imposing any additional communication requirements
for clock synchronization and without placing a significant
burden on existing protocols because this method considers
only the received time of the blocks and the information in
the block.

This remainder of this paper is organized as follows. In
Section II, we provide an overview of existing methods for
clock synchronization in PoS blockchains. Next, we describe
the details of the proposed method in Section III, and evalu-
ation experiments for the proposed method and their results
are discussed in Sections IV and V. Finally, in Section VI, we
present our conclusions and directions for future work.

II. RELATED WORK

In general, PoS blockchains rely on external clock synchro-
nization protocols. However, several studies have proposed
clock synchronization protocols to reduce this dependence
on external clock synchronization protocols. This section
describes clock synchronization protocols that have been pro-
posed for PoS blockchains. We first describe the existing
methods for Ethereum and then discuss other methods.

A. Clock Synchronization Protocols in Ethereum

Before we describe the existing methods, we explain the
concept of rounds in Ethereum 2.0, an upgraded version of

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

Ethereum. In Ethereum 2.0, time is divided into epochs and
slots, as shown in Figure 1. One slot is defined as 12 seconds,
and each epoch is divided into 32 slots. A randomly selected
validator generates and proposes a block in a given slot.

Buterin [5] proposed a method for synchronizing the local
clock of each node using the received time of the most recent
blocks received from neighbor nodes and the information in
the blocks. The local clock of the node that generated the block
is estimated according to the timestamp of the genesis block,
the slot number stored in the block, and the slot length, and the
offset between the estimated and received times of the block is
calculated for all nodes. Then, the node uses the median value
to adjust its own local clock. Simulation experiments have
shown the effectiveness of this method. However, the effects of
network latency and clock drift are not taken into account. In
addition, the frequency of clock adjustment is either too high
or not considered, and the freshness of the time information
used to calculate the estimated time may be low.

Vlasov [6] proposed a method for mapping the clock
synchronization problem to sensor fusion that uses a well-
known sensor fusion framework to estimate the time and
filter the interval data. However, because of the possibility
of introducing additional traffic to the existing network when
obtaining the time information and the assumption that a
reference clock synchronized to standard time exists, this
method is beyond the scope of comparison of this paper.

B. Other Clock Synchronization Protocols

Symbol [7] designs and uses its own protocols and is
thus independent of external entities. This protocol estimates
the local clock offset according to neighboring nodes and
synchronizes the time using a simple NTP-based procedure.
Bad data are filtered based on the response time of the
corresponding node, and each offset is weighted according
to the importance of the node that reported it to prevent
Sybil attacks. In addition, the number of clock adjustments
is recorded, and the age of the node is considered to strictly
control the behavior of older nodes. However, unique messages
are needed for clock synchronization, which is a challenge that
may generate additional traffic if this method is implemented
in existing protocols.

Alper [8] proposed Relative Time protocol, a method that
uses the estimated offsets of the local clocks of the block
producer and itself, which are calculated according to the
received times of the valid, finalized blocks received during the
relevant epoch. The local clock is corrected during each epoch
by taking the median of the estimated offsets. Relative Time
protocol can be implemented without imposing a significant
burden on the existing consensus mechanism since this pro-
tocol uses only the information in the block and the received
time of the block, similar to [5]. However, the effects of the
propagation delay and clock drift are not fully considered,
and the amount of time information used to calculate the
modification value may be limited because only information
from the relevant epoch is used.

BeaconBlocks [9] is a PoS protocol with a unique clock
synchronization method. This protocol proposes mechanisms
for determining the correct time at node startup and for
maintaining synchronization of the estimated time over the
lifespan of the node. The clock synchronization is maintained
by comparing the expected arrival time of the block, which
is calculated based on the block generation interval, with the
local clock when the block is received, with a slight correction
in the local clock in the direction of the discrepancy. This
protocol also suggests that the timing of block broadcasts be
adjusted to ensure that the estimated time does not deviate
too far from those of real-world clocks. However, because this
adjustment is based on only one piece of time information per
block, the number of samples is considered to be small. In
addition, it is unclear to what extent the local clock is modified
during the adjustment; therefore, this topic is not considered
in the comparison in this paper.

III. PROPOSED METHOD

In this section, we propose a method that considers the
effects of the block propagation time, clock drift, and other
factors that have not been fully considered in existing methods,
as described in Section II. Similar to the existing methods
[5], [8], the proposed method estimates the offset between the
clock of the block producer and its own local clock based
on the received time of the blocks and the information in
the block for blocks received during a certain period. In the
proposed method, instead of using the median of the estimated
offsets as the modification value, the block propagation time
is estimated according to the median of the estimated offsets
up to the current point; thus, the local clock does not deviate
from the real-world clock during each adjustment.

The synchronization accuracy is also improved by taking
the drift and frequency of the clock adjustment into account.

A. Calculation of the Estimated Offset

To estimate the offset between the block producer and the
local clock, we use the slot number i stored in the block and
the value of the local clock τi recorded when the correspond-
ing block is received. Note that the block propagation time
and clock drift are not considered here, as we are describing
the offset estimation method in existing methods. Let δi be
the estimated offset and Ls be the length of the slot. δi can
be calculated as follows:

δi = τi − Ls ∗ i

The proposed method calculates the estimated offset δi for all
blocks received during a certain period of time. The median
of the estimated offsets is recorded, and the block propagation
time is estimated according to the medians, which are updated
after each adjustment.

When the offsets are estimated with this method, we assume
that the block is generated and broadcast at the beginning of
the slot; thus, we do not consider when or how long it takes
to generate the block.

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

B. Consideration of the Block Propagation Time

The estimated offset can be expressed as follows, where the
block propagation time due to the block producer is ∆ and the
offset between the block producer and the local clock is o.

δ = ∆+ o

The offset o can be expressed as follows, where ϵ is the
adjustment error of the previous adjustment, cs is the number
of slots that have elapsed since the last adjustment, and d is
the clock drift per second of the local clock.

o = ϵ+ Ls ∗ cs ∗ d

Thus, the estimated offset δ can be expressed as follows.

δ = ∆+ ϵ+ Ls ∗ cs ∗ d (1)

To estimate the block propagation time, we assume two
conditions:

• The clock drift is negligibly small relative to the propa-
gation time.

• If the network is sufficiently synchronized with respect
to the average time, the sum of the adjustment errors
converges to the initial gap with respect to the average
time.

Here, the average time is the average value of the local
clocks of all nodes participating in the protocol, and the initial
gap is the difference between the average time and the local
clock at the start of the protocol. If the initial gap is small,
based on Equation (1) and the above assumptions, the average
of the median of the estimated offsets described in Section
III-A can be approximated as the average block propagation
time. We call this the estimated block propagation time. The
estimated block propagation time is reflected in the adjustment
to suppress deviations between the clock and the real-world
clock.

In this case, the modification value adjustτ can be ex-
pressed as follows, where median(δ) is the median estimated
offset recorded during the relevant period and ∆est is the
estimated block propagation time.

adjustτ = median(δ)−∆est

The modification values are recorded for each adjustment, and
these values are used to estimate the drift.

For the second assumption, one method for determining if
the local clock is sufficiently synchronized with the average
time of the network is to verify that the medians of the most
recent estimated offsets converge to a certain value. However,
since the block propagation time cannot be estimated until the
clock synchronization has been confirmed, the average time
deviates from that of the real-world clock due to the clock
adjustment that occurs during this time, as is the case with
the existing methods.

TABLE I: Parameter settings.

of nodes 100
of peers 5
Initial clock gap Variable
Delay ≃ 2.0[s] per hop
Slot size 12 [s]
of slots per epoch 32
Tick rate 0.1 [s] per tick
Drift ≤ 8.6 [s] per day
of ticks 240000

C. Consideration of Drift

Even if the local clock is successfully adjusted, the clock
drifts during the adjustment interval unless the clock is
corrected in advance. In the proposed method, the previous
modification values are recorded, as well as the number of slots
between the time of the previous adjustment and the time when
the corresponding block used to calculate the modification
value was generated, and both values are used to estimate the
drift.

Based on the previous assumptions, the sum of the adjusted
values can be approximated as the sum of the deviations
caused by the drift. Let k be the total number of slots recorded
and sum(adjustτ) be the sum of the modification values,
which can be expressed as follows:

sum(adjustτ) = Ls ∗ k ∗ d

Therefore, the estimated drift can be calculated based on the
recorded values, and the calculated estimated drift can be used
to determine the amount of drift per tick.

D. Frequency of Clock Adjustment

In the existing methods, the timing of the adjustment varied
between each epoch, block, and tick. If the time information
used for the adjustment is reset during each adjustment, the
frequency of adjustment should also be considered, since
the amount of time information used for adjustment changes
depending on the timing of the adjustment. In the proposed
method, the timing of the adjustment is determined at the
end of each epoch, as in [8], and the frequency of the clock
adjustment is modified by defining a threshold based on the
amount of time information required for the adjustment. When
the amount of time information exceeds this threshold value,
the local clock is corrected at the end of the epoch, and the
recorded time information is deleted; otherwise, no action is
taken. The number of epochs is not changed to modify the
frequency of clock adjustment because it cannot be guaranteed
that a certain amount of time information is collected during
an epoch if the local clock values are widely distributed.

IV. EXPERIMENTAL SETTINGS

This section describes the settings for the experiments and
simulations.

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

A. Simulator

We implemented the simulator for the experiments based
on the simulator used in [5]. This simulator was designed for
Ethereum 2.0, and for the experiments in this paper, Ethereum
2.0 was assumed to be a example of the PoS blockchain. In
the simulator, each node was assigned an initial value for its
local clock based on the values in Table I and advanced its
local clock based on the tick rates in Table I. The initial value
of the local clock of an ideal node was assumed to be 0. Each
node recognized a round based on the value of its local clock
and performed its assigned role during that round.

B. Network Model

The network model used in the experiments was based on
the underlying simulator configuration. At the start of the
protocol, the number of neighbors listed in Table I were
randomly selected, and the node communicated with these
neighbors. The message propagation time was based on the
values in Table I, and the received messages were broadcast
to all neighboring nodes.

C. Consensus Model

As described in Section II-A, Ethereum 2.0 uses rounds
known as epochs and slots. Each epoch and slot uses the values
adopted in Ethereum 2.0, which are shown in Table I. Each
node is assigned a block generation role for each slot, and the
node generates a block at the start of the slot and broadcasts
that block to the network. For block generation, the parent
block is determined by a fork-choice rule known as LMD
GHOST, and the node proposes its own block as a child block
of the parent block. The voting message used to calculate the
score in LMD GHOST is generated once per epoch by all
nodes.

D. Drift

Since the underlying simulator does not have a mechanism
for simulating the drift of the local clock of each node, we
determined the drift with a simple method. According to
[10], an RTC with a typical crystal oscillator drifts by up to
8.6 seconds per day. The simulator replicates this behavior
by assigning each node a uniform daily drift value between
[0.0, 8.6] at the start of the execution. The assigned values are
converted to per tick values and added to the tick rate values
at each tick, as shown in Table I. In this paper, the drift values
are assigned uniformly; however, an exact distribution will be
considered in future work.

E. Comparison Methods

In this section, we describe the methods that were compared
with the proposed method. The notations are summarized in
Table 2. The comparison methods were selected based on
the condition that no additional communication is required to
accomplish clock synchronization.

NAT is used as implemented in the underlying simulator
and adjusted using the estimated offsets of all neighboring
nodes recorded at each tick. For RTP, since the valid, finalized

TABLE II: Notation of the clock synchronization methods in this
paper.

noadjust No adjustment
NAT [5]
RTP [8]
proposed w/ prop time Proposed method: only the block and

propagation time are considered
proposed w/ drift Proposed: drift is also considered
proposed w/ drift (t = 100) Proposed: frequency of clock adjustment

based on threshold t is also considered

blocks cannot be obtained during the relevant epoch under this
experimental setting, they are replaced by all blocks received
during the relevant epoch for comparison. The offsets of these
methods are calculated using the method in Section III-A,
and the median of the offsets is used as the modification
value. proposed w/ prop time includes the estimated block
propagation time of our proposed method for RTP. proposed
w/ drift adds the estimated drift to proposed w/ prop time.
proposed w/ drift (t = 100) modifies the clock adjustment
frequency based on the amount t of time information required
for adjustment in proposed w/ drift. In this paper, the experi-
ments were conducted with t = 100.

Since there is a risk of introducing significant erroneous
corrections, as described in Section III-C, the drift correction
is performed by dividing the estimated drift value by 104. The
frequency of drift correction is determined after the local clock
has been adjusted five times.

F. Evaluation Metrics

The gap between the maximum and minimum local clocks
of all nodes in the network at the time of recording is used to
assess the synchronization accuracy. A recording is taken when
all nodes in the network have completed their nth adjustment,
where n ∈ {0, 1, ...}. However, the recording is taken at the
end of each epoch for NAT since this method performs an
adjustment for each tick.

As another evaluation metric, to evaluate the difference with
the real-world clock, we record the difference between the
average value of the local clocks of all nodes and the execution
time recorded at the same timing as the abovementioned gap.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method by com-
paring it with existing methods based on the settings described
in Section IV.

A. Without an Initial Gap

First, we discuss the results when the initial gaps of all local
clocks are zero. The experiments with initial gaps of zero are
intended to confirm the effect of the block propagation time
on each method. Furthermore, we confirm the effectiveness
of the proposed method, which is based on an assumption of
sufficient synchronization.

Figures 2 and 3 show the results of the gap between the
maximum and minimum local clocks and the gap between
the average of the local clocks and the real-world clock,

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

respectively. Figure 2 shows that the proposed method syn-
chronizes with higher accuracy than the existing methods.
The gap between the maximum and minimum local clocks
is smaller when using proposed w/ drift than when using
proposed w/ prop time, which confirms the expected effect of
the drift estimation. However, the results are not considerably
pronounced because the correction value of each tick is small,
as described in Section III-C. For proposed w/ drift (t = 100),
synchronization is achieved with the highest accuracy and the
fewest adjustments during execution, confirming that reducing
the adjustment frequency to ensure a certain number of time
information.

Figure 3 shows that the average value of the local clocks
of all nodes in the network deviates more from the value
of the real-world clock with increasing time when using the
existing methods. In contrast, with the proposed method, the
transition is closer to the real-world clock, which confirms the
effectiveness of the block propagation time estimation. Table
III shows the average value of the local clocks of all nodes
at the end of the execution. In the table, “ideal” indicates the
real-world clock, i.e., the execution time in the simulation. The
results show that the proposed method completes the execution
in a time that is sufficiently close to that of the real-world
clock. The results of proposed w/ drift and proposed w/ drift
(t = 100) deviate more from the real-world clock than the
results of proposed w/ prop time because the proposed method
corrects the drift estimation according to the average tick rate
in the network.

B. With an Initial Gap

Next, we describe the results when an initial gap between
[−2.0, 2.0] is uniformly assigned to the local clocks of all
nodes at the start of execution. The proposed method in this
experiment adjusts the local clocks in the same manner as
RTP until a constant synchronization is confirmed to satisfy the
second assumption in Section III-B, i.e., that the local clock is
synchronized to the network. After synchronization, the block
propagation time and drift are estimated for each method. The
synchronization can be confirmed with the method described
in Section III-B; however, for simplicity, we assume that the
five synchronization adjustments are performed using the same
adjustment method as for RTP. To improve the accuracy of the
block propagation time estimate, the block propagation time is
not estimated until the 10th adjustment, when synchronization
can be assumed, and these modification values are recorded
and used for the subsequent block propagation time estimation.

Figures 4 and 5 show the results of the gap between the
maximum and minimum local clocks and the gap between
the average of the local clocks and the real-world clock,
respectively. Table IV shows the average value of the local
clocks of all nodes at the end of execution. Figure 4 shows
that the gaps between the maximum and minimum local
clocks using proposed w/prop time and proposed w/drift are
equivalent to the gaps obtained using the existing methods.
As with the results in Section V-A, the effect of the drift
estimation on the proposed method is not clear with this result;

0 5000 10000 15000 20000
time[s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ga
p[

s]

NAT
RTP
proposed w/ prop time
proposed w/ drift
proposed w/ drift (t=100)

Fig. 2: Gap between the maximum and minimum local clocks
(without an initial gap).

0 5000 10000 15000 20000
time[s]

0

50

100

150

200

250

ga
p[

s]

NAT
RTP
proposed w/ prop time
proposed w/ drift
proposed w/ drift (t=100)

Fig. 3: Gap between the average of the local clocks and the real-
world clock (without an initial gap).

TABLE III: Average local clock value at the end of execution
(without an initial gap).

ideal 24000.00
noadjust 24001.13
NAT 23841.57
RTP 23743.20
proposed w/ prop time 24000.07
proposed w/ drift 24000.94
proposed w/ drift (t = 100) 24001.02

thus, additional experiments and more detailed analyses are
needed. It can be confirmed that proposed w/ drift (t = 100)
achieves the most accurate synchronization in many cases,
similar to the no initial gap scenario. Figure 5 and Table IV
show that the proposed method transitions closer to the real-
world clock than the existing methods, confirming the effect of
the block propagation time estimation. The gap with respect

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

0 5000 10000 15000 20000 25000
time[s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
ga

p[
s]

NAT
RTP
proposed w/ prop time
proposed w/ drift
proposed w/ drift (t=100)

Fig. 4: Gap between the maximum and minimum local clocks
(with an initial gap).

0 5000 10000 15000 20000 25000
time[s]

0

50

100

150

200

250

ga
p[

s]

NAT
RTP
proposed w/ prop time
proposed w/ drift
proposed w/ drift (t=100)

Fig. 5: Gap between the average of the local clocks and the real-
world clock (with an initial gap).

TABLE IV: Average local clock value at the end of execution
(with an initial gap).

ideal 24000.00
noadjust 24001.45
NAT 23843.58
RTP 23747.16
proposed w/ prop time 23963.45
proposed w/ drift 23963.72
proposed w/ drift (t = 100) 23964.07

to the real-world clock is not zero in the proposed method
because the local clock is adjusted as in RTP to synchronize
the local clock with the network. However, the proposed
method can suppress the effect of the block propagation time
on the gap with the real-world clock.

0 5000 10000 15000 20000 25000
time[s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ga
p[

s]

NAT
RTP
proposed w/ prop time
proposed w/ drift
proposed w/ drift (t=100)

Fig. 6: Gap between the maximum and minimum local clocks
(for nodes that do not follow the protocol).

TABLE V: Average local clock value at the end of execution
(for nodes that do not follow the protocol).

ideal 24000.00
noadjust 24001.45
NAT 23916.46
RTP 23847.05
proposed w/ prop time 23978.85
proposed w/ drift 23978.78
proposed w/ drift (t = 100) 23978.48

C. Nodes that Do Not Follow the Protocol

Finally, we conduct an experiment in which there are
nodes that do not follow the clock synchronization protocol.
As an example of a node that does not follow the clock
synchronization protocol, we assume the existence of a node
that does not adjust its local clock. In this paper, we present
results for a case in which 30% of the nodes in the network
do not adjust their clocks during the execution. The evaluation
metric for this result considers only the local clocks of the
honest nodes that adjust their clocks rather than the local
clocks of all nodes.

Figure 6 and Table V show the results of the gap between
the maximum and minimum local clocks and the average
value of the local clocks of all nodes at the end of execution,
respectively. Figure 6 shows that all methods except proposed
w/ drift (t = 100) have comparable accuracies, similar to
the results in Section V-B. Furthermore, compared to the
results of Section V-B, nodes that do not adjust their clocks
reduce the clock synchronization accuracy in the network of
honest nodes. proposed w/ drift (t = 100) achieves the highest
synchronization accuracy in many cases, similar to the results
in Section V-B, since the lower bound of the time information
for the adjustment is guaranteed. Table V confirms that the
proposed method can synchronize with a time that is closer to
that of the real-world clock than the existing methods, similar

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

to the results in Sections V-A and V-B.

VI. CONCLUSION

In this paper, we propose a new clock synchronization
protocol for slot-based PoS blockchains that is independent
of external protocols. The proposed method effectively uses
the received block time and the information within the block
to suppress the effects of the block propagation time and drift,
which have not been fully considered in existing methods. In
addition, the frequency of clock adjustment can be changed to
improve the synchronization accuracy. Simulation experiments
show that the proposed method can synchronize with a time
that is closer to that of the real-world clock and with higher
accuracy than existing methods. We also confirmed that this
effect can be observed even when there are nodes that do not
follow the protocol.

Future work will include experiments that assume the pres-
ence of malicious nodes.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[3] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol
version 4: Protocol and algorithms specification,” 2010.

[4] E. Foundation, “Go Ethereum,” https://geth.ethereum.org/.
[5] V. Buterin, “Network-adjusted timestamps,” 2018,

https://ethresear.ch/t/network-adjusted-timestamps/4187.
[6] A. Vlasov, “Lightweight Clock Sync Protocol for beacon chain,”

2020, https://ethresear.ch/t/lightweight-clock-sync-protocol-for-beacon-
chain/7307.

[7] BloodyRookie, gimre, and Jaguar0625, “Symbol from NEM -
Technical Reference,” Web document, Jan. 2020. [Online]. Available:
https://symbol.github.io/symbol-technicalref/main.pdf

[8] H. K. Alper, “Network time with a consensus on clock,” Cryptology
ePrint Archive, 2019.

[9] A. Hartl, T. Zseby, and J. Fabini, “BeaconBlocks: Augmenting Proof-of-
Stake with On-chain Time Synchronization,” in 2019 IEEE International
Conference on Blockchain (Blockchain). IEEE, 2019, pp. 353–360.

[10] Wikipedia, “Real-time-clock,” https://en.wikipedia.org/wiki/Real-time-
clock.

Proc. 5th IEEE Int'l Conf. on Blockchain
(IEEE Blockchain 2022), August 2022

