
Broadcast with Tree Selection on An Overlay Network
Takeshi Kaneko, and Kazuyuki Shudo

Tokyo Institute of Technology

Abstract—On an overlay network where a number of nodes
work autonomously in a decentralized way, the efficiency of
broadcasts has a significant impact on the performance of a dis-
tributed system built on the network. While a broadcast method
using a spanning tree produces a small number of messages, the
routing path lengths are prone to be relatively large. Moreover,
when multiple nodes can be source nodes, inefficient broadcasts
often occur because the efficient tree topology differs for each
node. To address this problem, we propose a novel protocol
in which a source node selects an efficient tree from multiple
spanning trees when broadcasting. This technique reduces the
frequency of inefficient broadcasts for multiple source nodes,
and shortens routing paths while maintaining a small number of
messages. We examined path lengths and the number of messages
for broadcasts on various topologies. As a result, especially for a
random graph, our proposed method shortened path lengths by
approximately 28% compared with a method using a spanning
tree, with almost the same number of messages.

I. INTRODUCTION

An overlay network is an application-level logical network
built on an existing network such as the Internet. It is ap-
plied to various distributed systems: e.g. distributed key/value
stores [1], video streaming [2], and online games [3]. In recent
years, application to the fields of IoT and blockchain is also
expected [4].

On an overlay network where a number of nodes work
autonomously in a decentralized way, the large-scale dis-
tributed system requests frequent information exchange with
low latency to achieve high scalability and high reliability.
Therefore, the efficiency of broadcasts has a significant impact
on the performance of the distributed system.

A variety of methods to realize efficient broadcasts have
been proposed [5]. In particular, while tree-based methods
using a spanning tree built on the network produce a small
number of messages, the routing path lengths are prone to
be larger than those of flooding and gossip-based methods.
Moreover, when multiple nodes issue broadcasts on a single
spanning tree, inefficient broadcasts often occur because the
appropriate topology of the tree differs for each node.

To address this problem, we propose a novel protocol in
which a source node selects an efficient tree from multiple
spanning trees when broadcasting. This method reduces the
frequency of inefficient broadcasts for multiple source nodes,
even if most participating nodes can be source nodes. It
thereby shortens routing path lengths while maintaining the
advantage of tree-based methods, which is producing a small
number of messages. We adopt Plumtree [6] as the spanning
tree construction protocol.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work on broadcasts using spanning
trees. Section III defines notations used in this paper. Sec-

tion IV presents the proposed method. Section V presents the
evaluation results. Finally, Section VI presents the conclusion.

II. RELATED WORK

A. Plumtree

Leitao et al. proposed a broadcast method called
Plumtree [6], which combines a gossip protocol and a tree-
based protocol. This achieves both a small number of messages
and high reliability. In addition, the routing path lengths of
each broadcast are relatively small for multiple source nodes
due to the optimization process of the tree topology. However,
as with other tree-based broadcasts, the lengths are still prone
to be larger than those of flooding because broadcast messages
are sent only on a single spanning tree topology.

B. Methods Using Multiple Spanning Trees

SplitStream [7] and Chunkyspread [8] are multicast methods
that construct multiple spanning trees on a network. Because
the purpose is streaming, the content is divided into some strips
and they are sent with all trees simultaneously; the load is
thereby balanced for each tree. On the other hand, the proposed
method selects an appropriate tree instead of multiple trees
and shortens the routing paths. SplitStream also differs from
the proposed method in that it constructs spanning trees on
a structured overlay Pastry [9], rather than an unstructured
overlay.

Thicket [10] is a multicast method that constructs and
manages multiple spanning trees on an unstructured overlay.
As with other existing methods, the purpose of using multiple
spanning trees is load balancing. On the other hand, the
proposed method selects one tree from multiple spanning trees
when broadcasting to shorten the routing paths. It is possible
to partially apply the proposed method to Thicket because the
idea for the tree selection is simple.

III. NOTATION

This section defines notations used in this paper.
An undirected graph G is represented by a pair (V,E),

where V denotes a set of vertices and E denotes a set of
edges. We define the following for G = (V,E):
• adjG : V 3 v 7→ (the set of all neighbors of v) ∈ 2V

• degG : V 3 v 7→ |adjG(v)| ∈ N
• distG : V × V 3 (u, v) 7→

(the distance between u and v) ∈ N ∪ {∞}
– Especially, ∀v ∈ V,distG(v, v) = 0.

An undirected rooted tree T is represented by a triple (V, F, r);
where V denotes a set of vertices, F denotes a set of edges,
and r denotes the root node. It can also be regarded simply
as an undirected graph T = (V, F). We define the following
for T = (V, F, r):

Proc. 36th Int'l Conf. on Information Networking
(ICOIN 2022), January 2022

Tree

Fig. 1. An example of tree selection from multiple spanning trees for a source node s.

• parentT : V − { r } 3 v 7→ (the parent of v) ∈ V
• childrenT : V 3 v 7→

(the set of all children of v) ∈ 2V

• subtreeT : V 3 v 7→ (the rooted subtree induced by v)
• heightT := max { distT (r, v) | v ∈ V } ∈ N

IV. PROPOSED METHOD

In the proposed method, multiple spanning trees are con-
structed on an overlay network (Section IV-A), and a source
node selects an appropriate tree from them (Section IV-B) and
issues a broadcast (Section IV-C).

Each spanning tree is embedded in an unstructured overlay
network managed by a peer sampling service [11], [12].
A spanning tree is maintained along the Plumtree proto-
col [6]. In Plumtree, a node has two types of neighbors in
eagerPushPeers and lazyPushPeers sets. EagerPushPeers
include neighbors along tree edges and lazyPushPeers include
other neighbors. A broadcast is basically performed over a tree,
that is, forwarding to eagerPushPeers . A node sometimes for-
wards a notification of arrival of a message to lazyPushPeers .
The notified node starts repairing a tree if it has not received
the message along the tree. Tree construction is as follows.
A node has all its neighbors in its eagerPushPeers at the
start of the construction. The initial tree is lengthy and there
are multiple paths to a single node. If a node receives the
same message from multiple neighbors, the node replies a
PRUNE message to the sender and both the sending and
receiving nodes move each other from eagerPushPeers to
lazyPushPeers .

Since messages for each broadcast are sent on a single tree,
the number of messages is approximately Θ(n) for a stable
overlay network where n denotes the number of participating
nodes.

Moreover, our aim is to minimize the maximum path length
from the source node to each node for each broadcast by the
following process:

1) Suppose that a finite number of spanning trees
T1 = (V, F1), T2 = (V, F2), . . . , Tk = (V, Fk) are man-
aged on a graph G = (V,E)1 of the network topology.

2) A source node s ∈ V selects the tree Tλ
(λ ∈ { 1, 2, . . . , k }) that minimizes

height(V,Fλ,s) = max { distTλ(s, v) | v ∈ V } , (1)

1Strictly speaking, an overlay network with a peer sampling service forms a
topology of a directed graph. However, for simplicity, the network topology is
regarded as an undirected graph in this paper because each managed spanning
tree behaves like an undirected graph.

Algorithm 1: Fields and Initialization in a Node
vcurrent

1 data structure Tree
2 field eagerPushPeers : Set〈Node〉
3 field lazyPushPeers : Set〈Node〉
4 field distFor : Map〈Node, Int〉
5 field parent : Node

6 upon receiving 〈INIT〉 then
7 peers ← getPeers()
8 trees ← new Map〈Int ,Tree〉
9 receivedMsgs ← new Map〈Int ,Message〉

10 missing ← ∅

which is the maximum path length of each simple path
whose one end is the node s on Tλ.

Fig. 1 shows an example of tree selection. In this example,
the network manages three spanning trees T1, T2, and T3,
the source node is a node s, and then height(V,F1,s) = 3,
height(V,F2,s) = 4, and height(V,F3,s) = 4. Since T1 mini-
mizes (1), the source node s selects T1 from them.

Note that, however, since each node does not have global
information on the network, it selects a tree based on a value
estimated only from information it knows rather than the exact
value of (1).

A. Construction of spanning trees

The proposed method constructs multiple spanning trees on
the network at the beginning of the protocol. The number of
trees, a positive integer k, is a system parameter determined
before running the protocol. We randomly select k start nodes
from the network2 and construct a spanning tree for each start
node based on the delivery tree by flooding.

Algorithm. 1 and Algorithm. 2 are pseudocodes on ini-
tialization and spanning tree construction, respectively. For
simplicity, the latter pseudocode assumes that no messages
are lost and no nodes join or leave during the construction of
a spanning tree. In practice, it is necessary to address such
situations by using timeout timers.

Each start node vstart constructs a new spanning tree by
issuing an event 〈ConstructTree, treeIdnew 〉 to itself vstart .
Herein, we generate treeIdnew , the ID corresponding to the
tree to be constructed, e.g., by a pseudorandom number to
avoid duplicate IDs.

2For example, we can sample some start nodes by doing a random walk
from a node and selecting nodes on every certain number of hops. However,
because sampling with a simple random walk is biased by the degree of each
node, if it is preferred to sample nodes with a uniform distribution, e.g., we
should use a random walk using Metropolis-Hastings algorithm [13].

Proc. 36th Int'l Conf. on Information Networking
(ICOIN 2022), January 2022

Algorithm 2: Tree Construction in a Node vcurrent
1 upon receiving 〈CONSTRUCTTREE, treeId〉 from vsender then
2 if treeId /∈ trees.keys() then
3 t← new Tree
4 trees[treeId]← t
5 t.eagerPushPeers ← peers
6 t.parent ← vsender
7 for vadj ∈ t.eagerPushPeers do
8 if vadj = vsender then
9 continue

10 send 〈CONSTRUCTTREE, treeId〉 to vadj

11 else
12 send 〈UPDATEDISTTOWARDROOT, treeId ,∞〉 to vsender

13 upon receiving
〈UPDATEDISTTOWARDROOT, treeId , distForSender〉 from
vsender then

14 t← trees[treeId]
15 if distForSender <∞ then
16 t.distFor [vsender]← distForSender
17 else
18 t.eagerPushPeers ← t.eagerPushPeers − {vsender}
19 t.lazyPushPeers ← t.lazyPushPeers ∪ {vsender}
20 if t.eagerPushPeers − { t.parent } = t.distFor .keys() then
21 if t.parent = vcurrent then

// when vcurrent is the root node of t
22 send 〈UPDATEDISTTOWARDLEAVES, treeId , 0〉 to

vcurrent
23 else
24 maxDist ←

getMaxDistExceptOne(t.distFor , t.parent)
25 send

〈UPDATEDISTTOWARDROOT, treeId ,maxDist + 1〉
to t.parent

26 upon receiving
〈UPDATEDISTTOWARDLEAVES, treeId , distForSender〉 from
vsender then

27 t← trees[treeId]
28 if vsender 6= vcurrent then
29 t.distFor [t.sender]← distForSender

30 for vadj ∈ t.eagerPushPeers do
31 if vadj = vsender then
32 continue
33 maxDist ← getMaxDistExceptOne(t.distFor , vadj)
34 send

〈UPDATEDISTTOWARDLEAVES, treeId ,maxDist + 1〉
to vadj

35 function getMaxDistExceptOne(distFor , vexcepted)
36 maxDist ← 0
37 for (vadj , d) ∈ distFor do
38 if vadj = vexcepted then
39 continue
40 maxDist ← max{maxDist , d}
41 return maxDist

When each node vcurrent receives an event
〈ConstructTree, treeId〉, if it does not have the
corresponding tree data, then it generates a new tree t
and initializes t.eagerPushPeers with its neighbor nodes
and sends the same event 〈ConstructTree, treeId〉 to each
of the nodes. If it has the corresponding tree data, then it
sends an event 〈UPDATEDISTTOWARDROOT, treeId ,∞〉 to
the sender to indicate that vcurrent has already received the

event for the treeId . The sender that receives it excludes
vcurrent from t.eagerPushPeers . Through these processes,
if each node is considered to have an edge with each node
in t.eagerPushPeers , a spanning tree forms on the network
where the start node vstart is the root node.

A node that sent an event 〈ConstructTree, treeId〉
to its neighbor nodes, after receiving an event
〈UPDATEDISTTOWARDROOT, treeId , distForSender〉
from each of them, sends an event
〈UPDATEDISTTOWARDROOT, treeId ,maxDist + 1〉 to
the parent node t.parent where maxDist is

maxDist

= max

 { 0 }∪{
t.distFor [v] |
v ∈ t.eagerPushPeers − { t.parent }

} .

(2)
In general, the following holds for any node v ∈ V of a rooted
tree T = (V, F, vstart):

heightsubtreeT (v)

= max

({ 0 }∪{
heightsubtreeT (u) + 1

∣∣∣ u ∈ childrenT (v)
}) .

(3)
Thus, this process means computing the height of the tree
by dynamic programming through the propagation of “dis-
tance” information into the root node vstart . Therefore, Each
t.distFor [vadj] represents (heightsubtreeT (vadj) + 1).

After completing the propagation of “distance” information
into the root node, “distance” information propagates
into leaf nodes such that each node sends an event
〈UPDATEDISTTOWARDLEAVES, treeId , distForSender〉 to
each of the children. In general, the following holds for any
u ∈ V and any internal node v ∈ V − { vstart } of a rooted
tree T = (V, F, vstart):

heightsubtree(V,F,v)(u)

= max

(
{ 0 } ∪

{
heightsubtree(V,F,v)(w) + 1 |
w ∈ children(V,F,v)(u)

})

= max

 { 0 }∪{
heightsubtree(V,F,v)(w) + 1 |
w ∈ adjT (u)− {parent(V,F,v)(u)}

}
(4)

If

subtree(V,F,v)(u) = subtreeT (u), (5)

Proc. 36th Int'l Conf. on Information Networking
(ICOIN 2022), January 2022

Algorithm 3: A Broadcast with Tree Selection in a
Node vcurrent

1 upon receiving 〈BROADCAST,msg〉 from vsender then
2 msgId ← hash(msg ‖ vcurrent)
3 treeId ← selectTree()
4 send 〈GOSSIP,msg,msgId , treeId , 0, 0〉 to vcurrent

5 function selectTree()
6 minTreeId ←∞
7 minDist ←∞
8 for (treeId , t) ∈ trees do
9 distToEnd ← max ({ 0 } ∪ t.distFor .values())

10 if distToEnd < minDist then
11 minDist ← distToEnd
12 minTreeId ← treeId

13 return minTreeId

then

heightsubtree(V,F,v)(u)

= max

(
{ 0 } ∪

{
heightsubtreeT (w) + 1 |
w ∈ adjT (u)− { parentT (u) }

})

= max

({ 0 }∪{
heightsubtreeT (w) + 1

∣∣∣ w ∈ childrenT (u)
})

=heightsubtreeT (u).
(6)

Moreover,

parent(V,F,v)(u) ∈ childrenT (u) (7)

is a necessary condition for

u 6= v ∧ subtree(V,F,v)(u) 6= subtreeT (u). (8)

Thus, when completing the propagation into leaf nodes, each
t.distFor(vadj) represents (heightsubtree(V,F,vcurrent)(vadj)

+ 1).
Through the above processes, a spanning tree is constructed

on the overlay network. In a one-and-a-half round-trip broad-
cast by the start node vstart , every t.distFor is computed
by dynamic programming with piggyback of the “distance”
information.

B. Tree selection

A source node vcurrent broadcasts by issuing an event
〈BROADCAST,msg〉 for a message body msg to itself
vcurrent . Here, it selects a tree from trees and makes each
node send messages on the tree.

Algorithm. 3 is a pseudocode on the tree selection. A
function selectTree returns the ID of the tree t in trees
such that (9) is minimum.

max ({ 0 } ∪ { distFor [vadj] | vadj ∈ t.eagerPushPeers })
(9)

If t represents a rooted tree (V, F, vcurrent), distFor [vadj] rep-
resents (heightsubtree(V,F,vcurrent)(vadj)

+1). Thus, (9) represents

max

(
{ 0 } ∪

{
heightsubtree(V,F,vcurrent)(v)

+ 1 |
v ∈ adj(V,F,vcurrent)(vcurrent)

})
=height(V,F,vcurrent).

(10)
This is equivalent to (1) where vcurrent = s. Therefore, this
process intuitively means tree selection minimizing the maxi-
mum path length for the broadcast.

In practice, tree selection does not always minimize the
maximum path length because the selection is based on local
information and the network topology is dynamic. How the
values t.distFor are updated is important for improving the
accuracy of the tree selection.

C. Message propagation and value update

Message propagation and topology management during a
broadcast mostly follow the Plumtree protocol for a tree
determined by the tree selection algorithm. For message
propagation, a node provides a function receiving a Gossip

message, a function receiving a Prune message. For topology
management and optimization, a node provides a function
receiving Ihave message, a function receiving a Timeup

message, a function receiving Graft message. Pseudocode for
them can be derived intuitively from the Plumtree protocol. An
extended version of this paper will provide the pseudocode.

To support dynamics of the network for tree selection, each
node updates the values of t.distFor (line 4 in Algorithm 1)
through the message propagation with piggybacked “distance”
information. Since the data size of the piggyback is very small,
the additional cost of the communication is insignificant.

The more frequent broadcasts are, the faster the values of
distFor follow the exact values for the dynamic network,
and the more accurate tree selection becomes. On the other
hand, the more the network changes, the more there is a delay
in following the values, and the less accurate tree selection
becomes.

Finally, for joining and leaving of nodes, a node pro-
vides a function receiving NeighborDown, a function re-
ceiving NeighborUp, and a function receiving DistUpdate.
NeighborUp and NeighborDown are events issued by a peer
sampling service and update information for neighbor nodes.
Moreover, the protocol also locally computes the values of
t.distFor . An extended version of this paper will provide a
pseudocode.

V. EVALUATION

We conducted experiments by simulating broadcasts on
an overlay network, and measured the path lengths and the
number of messages. We developed the simulator by ourselves.

A. Experiment settings

The simulating procedure for a combination of a method
and an overlay network is as follows:

1) We generate an overlay network G = (V,E), on which
spanning trees are built.

Proc. 36th Int'l Conf. on Information Networking
(ICOIN 2022), January 2022

2) We construct spanning trees if a method requires them.
3) Let the following procedure be 1 cycle, and we execute

1000 cycles.
a) We determine a source node vstart ∈ V randomly.
b) We issue a broadcast on the source node vstart .
c) We measure the path lengths and the number of

messages.
d) In Plumtree and the proposed method, we update

tree topologies by following each method.
We use the following graphs as the overlay network, on

which spanning trees are built. The number of nodes for each
graph is |V | = 10000.
Random Graph

A random graph generated by Erdös-Rényi
model [14]. In this experiment, we generate a
graph of Γ10000,50000 where |V | = 10000 and
|E| = 50000. Γn,N is a graph generation model
whose N edges are randomly selected from

(
n
2

)
node pairs for the fixed number of nodes n.

BA Model Graph
A graph generated by Barabási-Albert model [15].
The model generates a scale-free graph. In this
experiment, |V | = 10000, and the number of edges
added at each step of the generation is 5. Thus,
|E| ≈ 50000.

We use the following broadcast methods for comparison.
Plumtree
proposed

The proposed method. The number of trees is 10.
ideal proposed

A broadcast method where every tree selection for
the proposed method is ideal. This means that a
source node always selects a tree minimizing the
maximum path length. The number of trees is 10.

multiple Plumtrees
A method that manages 10 Plumtrees and broadcasts
to all of them. The path length is the minimum path
length among all the trees. The number of messages
is approximately 10 times larger than Plumtree.

flooding

Since we assume that there are multiple source nodes for
broadcasts, we set the value threshold used in the topology
optimization of Plumtree protocol to 7.

B. Experiment result

Fig. 2 and Fig. 3 show the transitions of the maximum path
lengths and the average path lengths of broadcasts for Random
Graph, respectively. The translucent lines represent the mea-
sured values, and the opaque lines represent the moving
average value for 50 cycles. The same representation is used
in the following figures showing the transition of path lengths.
We use moving averages to facilitate comparison of the relative
values for each broadcast method. As a result of Fig. 2,
the proposed method proposed reduces the maximum path
length by approximately 28% compared with Plumtree.

TABLE I
REDUCTION RATIO OF MAXIMUM PATH LENGTH BY PROPOSED METHOD

COMPARED TO PLUMTREE.

Overlay network Reduction ratio
Random Graph 28%
BA Model Graph 7%

However, it is not as short as that of ideal proposed,
which suggests that the update of values distFor does not
sufficiently follow the topology changes by Plumtree protocol.
In addition, the maximum path length of ideal proposed
is almost the same as that of multiple Plumtrees. This
suggests that the proposed method can potentially achieve the
same length as the maximum path length when using multiple
Plumtrees despite the number of messages on using a single
Plumtree if the values distFor follows the topology changes.
Furthermore, as a result of Fig. 3, the magnitude relationship
of the average path length of each broadcast method tends to
be almost the same as that of the maximum path length.

Fig. 4 shows the relation between the maximum path length
and the number of messages for Random Graph. We plotted
the results for 901–1000 simulation cycles. As a result, the
numbers of messages of Plumtree, proposed, and ideal
proposed are approximately 10000 (≈ |V |), which are
much smaller than those of flooding and multiple
Plumtrees, and especially, are approximately 11% of that
of flooding. This is because, in the former, most messages
are sent on a single spanning tree and there are few duplicate
messages, while in the latter, many duplicate messages occur
due to the property of the methods. Therefore, the experi-
mental results for Random Graph show that the proposed
method shortens path lengths compared to Plumtree while
maintaining the small number of messages.

Fig. 5 and Fig. 6 show the transitions of the maximum
path lengths and the average path lengths of broadcasts for
BA Model Graph, respectively. As a result of Fig. 5, the
proposed method proposed reduces the maximum path
length by approximately 7% compared to Plumtree. In
addition, it achieves almost the same maximum path length as
that of ideal proposed, which suggests that the update
of values distFor significantly follows the topology changes
by Plumtree protocol for BA Model Graph.

Fig. 7 shows the relation between the maximum path length
and the number of messages for BA Model Graph. We
plotted the results for 901–1000 simulation cycles. It presents
a similar result to Fig. 4 on the number of messages.

Table I summarizes the reduction ratio of maximum path
length by the proposed method compared to Plumtree. Con-
tribution of the proposed method could be much on a random
graph, and moderate on a scale-free network generated by a
BA model, that is natively efficient for broadcasting due to its
small diameter.

VI. CONCLUSION

In this paper, we proposed a novel broadcast method. It
constructs multiple spanning trees on the overlay network,
and a source node selects an appropriate tree from them

Proc. 36th Int'l Conf. on Information Networking
(ICOIN 2022), January 2022

0 200 400 600 800 1000

Simulation cycle

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ax

im
um

 p
at

h
 le

ng
th

Plumtree
proposed
ideal proposed
multiple Plumtrees
flooding

Fig. 2. Maximum path length for Random Graph.

0 200 400 600 800 1000

Simulation cycle

0

2

4

6

8

10

12

14

A
ve

ra
ge

 p
at

h
 le

ng
th

Plumtree
proposed
ideal proposed
multiple Plumtrees
flooding

Fig. 3. Average path length for Random Graph.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Maximum path length

0

20000

40000

60000

80000

100000

120000

140000

N
um

b
er

 o
f m

es
sa

ge
s

Plumtree
proposed
ideal proposed
multiple Plumtrees
flooding

Fig. 4. Relation between the maximum path length
and the number of messages for Random Graph.

0 200 400 600 800 1000

Simulation cycle

0

2

4

6

8

M
ax

im
um

 p
at

h
 le

ng
th

Plumtree
proposed
ideal proposed
multiple Plumtrees
flooding

Fig. 5. Maximum path length for BA Model
Graph.

0 200 400 600 800 1000

Simulation cycle

0

1

2

3

4

5

6

7

A
ve

ra
ge

 p
at

h
 le

ng
th

Plumtree
proposed
ideal proposed
multiple Plumtrees
flooding

Fig. 6. Average path length for BA Model Graph.

0 2 4 6 8

Maximum path length

0

20000

40000

60000

80000

100000

N
um

b
er

 o
f m

es
sa

ge
s

Plumtree
proposed
ideal proposed
multiple Plumtrees
flooding

Fig. 7. Relation between the maximum path
length and the number of messages for BA Model
Graph.

when broadcasting. This reduces the frequency of inefficient
broadcasts for multiple source nodes. It thereby achieves
shortening routing path lengths while maintaining a small
number of messages.

The evaluation experiments show that the effect of the
proposed method on the path lengths is dependent on the
topology of the overlay network. For graphs that closely
resemble realistic network topologies, the paths tend to be
shortened, especially for a random graph, with a reduction
ratio of approximately 28% compared to Plumtree. Moreover,
the number of messages was almost the same as the number
of nodes. This shows that the proposed method shortens path
lengths while maintaining the small number of messages.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP21H04872.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 205–220.

[2] N. Ramzan, H. Park, and E. Izquierdo, “Video streaming over P2P
networks: Challenges and opportunities,” Signal Processing: Image
Communication, vol. 27, no. 5, pp. 401–411, May 2012.

[3] A. Yahyavi and B. Kemme, “Peer-to-peer Architectures for Massively
Multiplayer Online Games: A Survey,” ACM Comput. Surv., vol. 46,
no. 1, pp. 9:1–9:51, Jul. 2013.

[4] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an Optimized
BlockChain for IoT,” in Proceedings of the Second IEEE/ACM Inter-
national Conference on Internet-of-Things Design and Implementation,
ser. IoTDI ’17. New York, NY, USA: ACM, 2017, pp. 173–178.

[5] P. Ruiz and P. Bouvry, “Survey on Broadcast Algorithms for Mobile Ad
Hoc Networks,” ACM Computing Surveys (CSUR), vol. 48, no. 1, pp.
8:1–8:35, Jul. 2015.

[6] J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic Broadcast Trees,”
in 2007 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS 2007), Oct. 2007, pp. 301–310.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments,” ACM SIGOPS Operating Systems Review, vol. 37, no. 5,
pp. 298–313, Oct. 2003.

[8] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heteroge-
neous Unstructured Tree-Based Peer-to-Peer Multicast,” in Proceedings
of the 2006 IEEE International Conference on Network Protocols, Nov.
2006, pp. 2–11.

[9] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Mid-
dleware 2001, ser. Lecture Notes in Computer Science, R. Guerraoui,
Ed. Springer Berlin Heidelberg, 2001, pp. 329–350.

[10] M. Ferreira, J. Leitão, and L. Rodrigues, “Thicket: A Protocol for
Building and Maintaining Multiple Trees in a P2P Overlay,” in 2010
29th IEEE Symposium on Reliable Distributed Systems, Oct. 2010, pp.
293–302.

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Transactions on Computer
Systems, vol. 25, no. 3, pp. 8–es, Aug. 2007.

[12] J. Leitao, J. Pereira, and L. Rodrigues, “HyParView: A Member-
ship Protocol for Reliable Gossip-Based Broadcast,” in 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN’07), Jun. 2007, pp. 419–429.

[13] M. Al Hasan, “Methods and Applications of Network Sampling,” in
Optimization Challenges in Complex, Networked and Risky Systems, ser.
INFORMS TutORials in Operations Research. INFORMS, Oct. 2016,
ch. 5, pp. 115–139.

[14] P. Erdös and A. Rényi, “On random graphs I.” Publicationes mathemat-
icae, vol. 6, no. 26, pp. 290–297, 1959.

[15] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

Proc. 36th Int'l Conf. on Information Networking
(ICOIN 2022), January 2022

