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Abstract—Examinations that involve programming, such as
programming contests and certification exams, are common.
However, current examination protocols require full trust in the
operating organizations, which allows malicious organizations to
cheat. As a countermeasure, efforts are being made to develop
examination protocols that do not need a trusted authority.

One way to build such a decentralized protocol is to apply
blockchain. Several blockchain-based examination protocols have
been proposed, but they can only handle a finite set of correct
answers.

We propose an examination protocol that can handle a set
of correct answers defined by a program and mathematically
guarantee the validity of the protocol. We also implement a
programming contest platform based on the proposed method on
Ethereum and show the feasibility of the method. Furthermore,
we measure the economic cost of the method using the implemen-
tation and confirm that the method is feasible for approximately
30–40 USD.

Index Terms—blockchain, examination, Ethereum, competitive
programming

I. INTRODUCTION

For the healthy operation of society, various types of exam-
inations, such as proficiency tests and entrance exams, need
to be conducted without fraud. However, current examination
protocols are based on full trust in the operating organizations,
which has led to incidents of malicious organizations falsifying
results [1].

The more fraud is uncovered, the more trust operating
organizations need to gain. This trend will promote oligopolies
in the examination market and encourage individual exams to
become larger. This makes auditing more difficult and fraud
easier. One way to overcome this negative feedback loop is
to build examination protocols that do not need a trusted
authority.

Soon after Nakamoto [2] proposed Bitcoin, an electronic
currency without a trusted central authority, people realized
that the core technology of Bitcoin, the blockchain, could be
used for applications other than currency. For example, Name-
coin [3] provides a decentralized version of name registration
and resolution services traditionally provided by a DNS. Such
decentralized applications have come to be known as dapps.
With this background, it was natural to propose an examination
protocol using blockchain.

This work was supported by JSPS KAKENHI Grant Number JP21H04872.
This work was supported by SECOM Science and Technology Foundation.

The pioneering work of Yoshimura [4], Sawada [5], and
Kaneko et al. [6] has convinced us of the possibility of
building blockchain-based examination protocols. However,
the methods of these previous studies have the problem that
they can handle only a finite set of correct answers and cannot
be used for exams that require complex correct and incorrect
judgments, such as programming contests.

Based on these previous studies, we propose a decentralized
examination protocol that can handle a correct answer set
defined by a program. The proposed method is described
using an original model of computation, and the validity of
the method is mathematically guaranteed. We also implement
a decentralized programming contest platform based on the
proposed method on Ethereum [7]. In addition, we propose
solutions to problems that emerged during the implementation
process and measure the economic cost of the method using
the implementation.

This paper is organized as follows: In Section 2, we clarify
the problems of previous studies and specify the properties that
the proposed method should satisfy. In Section 3, we introduce
a computational model to describe the proposed method. In
Section 4, the basic proposed method α is discussed. In Section
5, we discuss the proposed method β, with reduced economic
cost. In Section 6, we propose solutions to problems that
emerged in the process of implementing the proposed method
and measure the economic cost of the method using the
implementation.

II. PREVIOUS STUDIES

Yoshimura [4] was the first to propose an examination
protocol using dapp. Although Yoshimura’s method focuses
on a form of security contest called capture-the-flag (CTF),
it can be extended to a general-purpose examination protocol
that handles a finite set of correct answers with some trivial
modifications. Some problems with Yoshimura’s method are
that it requires a fixed set of answerers before an exam, and
only the fastest correct answerer in each exam is recorded.
The economic cost is O(|P ||A|) for a questioner and O(1)
for an answerer, where P is a set of answerers and A is a set
of correct answers1.

1When implemented in a Bitcoin pay-to-script-hash (P2SH) transaction,
O(1) is the cost for a questioner, and O(|P ||A|) is that for an answerer.
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Sawada [5] combined Yoshimura’s method with a commit-
ment scheme and improved it to handle an unlimited number
of answerers. The economic cost of Sawada’s method is
O(|A|) for both a questioner and an answerer, where A is
a set of correct answers.

Kaneko et al. [6] proposed an examination protocol us-
ing dapp independently of Yoshimura and Sawada. Unlike
Yoshimura’s and Sawada’s methods, Kaneko et al.’s method
records all correct answerers. However, as in Yoshimura’s
method, it is necessary to fix a set of answerers before an
exam. The economic cost is O(|P |) for a questioner and
O(|A|) for an answerer, where P is a set of answerers and A
is a set of correct answers.

Some common problems for these existing methods are that
they can handle only a finite set of correct answers and that
they do not discuss how to distribute the content of a problem.

Based on the problems with these existing methods, we
propose a method that satisfies the following four points: First,
it can handle an unlimited number of answerers. Second, all
correct answerers are recorded. Third, it can handle a set of
correct answers defined by a program. Fourth, the integrity of
the problem content can be guaranteed.

III. MODEL OF COMPUTATION

Let k ∈ N be a security parameter, and let N ∈ N be
sufficiently large. Let ∥ be the concatenation operator for two
sequences of bits, and let λ be the empty sequence.

A. Cryptographic Hash Function

We define a cryptographic hash function as a 5-
tuple

(
{HK k}k∈N,Gen, l,Hash,CO

)
satisfying the following

seven conditions:
• (Hash key set) For each k ∈ N, HK k is a nonempty set

of binary sequences.
• (Hash key generation function) Gen is a probabilistic

polynomial-time algorithm. For each k ∈ N, if 1k is
input, it outputs hk ∈ HK k.

• (Hash length) l : N→ N
• (Hash function) Hash is a polynomial-time algorithm. For

each k ∈ N, if hk ∈ HK k and x ∈ {0, 1}∗ are input, it
outputs y ∈ {0, 1}l(k).

• (Compatible oracle set) CO is a nonempty set of oracles.
• (Collision resistance) Let A be any probabilistic

polynomial-time algorithm that is arbitrarily interrogat-
able to each oracle belonging to CO ′, a finite subset of
CO . P(Collk,A = 1) is a negligible function for k, where
Collk,A is a probabilistic game defined by the following:

1) hk ← Gen(1k).
2) (x, x′)← A(hk).
3) If x ̸= x′ ∧ Hash(hk , x) = Hash(hk , x′), return 1;

otherwise, return 0.
• (Preimage resistance) Let A be any probabilistic

polynomial-time algorithm that is arbitrarily interrogat-
able to each oracle belonging to CO ′, a finite subset of
CO . P(Prek,A = 1) is a negligible function for k, where
Prek,A is a probabilistic game defined by the following:

1) hk ← Gen(1k).
2) Choose x uniformly from

∪N
n=0 {0, 1}

n.
3) x′ ← A(hk ,Hash(hk , x)).
4) If Hash(hk , x) = Hash(hk , x′), return 1; otherwise,

return 0.
In what follows, we assume that there is one cryptographic

hash function.

B. Parties

We model a system as a sequence of probabilistic
polynomial-time algorithms. Each algorithm has a unique
address of na bits. Algorithms send and receive messages
with each other. In other words, a party is a pair of an address
and a probabilistic polynomial-time algorithm. We denote the
address of a party P as aP .

We consider two types of parties: external parties, which
represent system participants outside a blockchain, and con-
tract parties, which represent programs on a blockchain.

External parties issue a send command to send a message.
Messages are expressed in a list format, where the first term
of each message is the destination address. Each sent message
is pushed to the message queue of the destination, with the
first term replaced by the source address. To prevent contract
parties from sending messages to each other and creating a
loop, contract parties do not send messages.

Parties issue a receive command to pop a message from their
message queue. If a message queue is empty, it returns a list
with all terms set to λ. In addition, as described below, there
are timing and frequency restrictions on receiving commands
for contract parties.

C. Execution Model

Execution of a system proceeds in phases.
In the first phase of each execution, an initialization function

is first executed to determine the initial arguments of each
party. The arguments of an initialization function are given as
the arguments of an entire system.

At the beginning of each phase, external parties are in an
activated state, and contract parties are in a deactivated state.
Contract parties are activated when they receive a message
from another party and issue a receive instruction only once
immediately after activation. This restriction replicates the
behavior of dapps on Ethereum. On the other hand, external
parties are never activated by receiving a message. If an exter-
nal party is deactivated during a phase, it remains deactivated
until the start of the next phase.

Each party runs for a polynomial time with one activation.
This time restriction also applies to a party that deviates from
a protocol due to a failure. When a party is deactivated and
then reactivated, the return value of the previous action is used
as the argument for the next action. When all the parties are
deactivated, the next phase is started.

D. Openness of Contract Parties

The initial arguments of contract parties, the return values
of all actions of contract parties, and all messages addressed to
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Figure 1. The parties in the proposed method α.

contract parties are recorded and can be accessed by external
parties. This is because contract parties run on a blockchain.

E. Failure Model

Contract parties do not fail, because they run on a
blockchain. External parties can fail, but the polynomial-time
restriction still applies.

IV. PROPOSED METHOD Α

The proposed method α is designed as a dapp on a
blockchain. We describe the protocol using the computation
model introduced in Section 3.

A. Parties

The hash key is the same for all parties. Figure 1 illustrates
the parties in this method.

• Questioner O is an external party that holds an exam.
O has the hash key hk ∈

∪
k∈N HK k, the exam content

content ∈
∪N

n=0 {0, 1}
n, and the correctness judgment

program correctness ∈
∪N

n=0 {0, 1}
n as the initial argu-

ments2.
• Contract C is the only contract party required by our

method. C has the hash key hk ∈
∪

k∈N HK k as its initial
argument.

• Answerer Pi is an external party that takes an exam. Pi

has the hash key hk ∈
∪

k∈N HK k as their initial argu-
ment. They can also interrogate an oracle answer i ∈ CO ,
which outputs an answer of at most N − na bits when
the exam content is input.

B. Intuitive Description

1) (Announcement start phase)O sends Hash(hk , content)
and Hash(hk , correctness) to C. C records the received
data.

2) (Announcement phase) O announces an exam and in-
vites answerers. The channel used for the announcement
is not specified in this method.

3) (Submission start phase) When it is time to start the
exam, O sends content to C. C computes the crypto-
graphic hash of the received data and verifies that it
matches the one recorded in Step 1. If it matches, the
received data are recorded as content ′.

2The judgment program must be a pure function. In other words, the pro-
gram must not change its behavior according to the environment surrounding
it. Otherwise, the results of some judgments will be unable to be uniquely
determined.

Algorithm 1 Announcement start phase
1: function INITIALIZE(hk ,content ,correctness)
2: Let the initial arguments of O be

(hk ,content ,correctness).
3: Let the initial arguments of C be

(hk ,λ,λ,λ,λ,{λ},λ,{λ}).
4: Let the initial arguments of Pi be (hk ).
5: end function
6: procedure O(hk ,content ,correctness)
7: send (aC ,Hash(hk , content),Hash(hk , correctness))
8: return (hk ,content ,correctness)
9: end procedure

10: procedure C(hk , phase , hContent , hCorrectness ,
content ′, {hAnswera}, correctness ′, {correcta})

11: (from, d1, d2) ← receive
12: if from = aO ∧ phase = λ then
13: return (hk , “announcement”, d1, d2, content ′,
{hAnswera}, correctness ′, {correcta})

14: end if
15: return (hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
16: end procedure

Algorithm 2 Announcement phase
1: Do nothing.

4) (Submission phase) Each Pi sends
Hash(hk , answer i(content

′)∥aPi) to C to submit
their answer3.

5) (Judgment start phase) When it is time to end the
exam, O sends the correctness to C. C computes the
cryptographic hash of the received data and verifies that
it matches the one recorded in Step 1. If it matches, the
received data are recorded as correctness ′.

6) (Judgment phase) Each Pi sends answer i(content
′) to

C. C computes the cryptographic hash of the bitstring
concatenation of the received data and the source address
and verifies that the hash matches the hash recorded in
Step 4. If it matches, the received data are judged by
correctness ′, and the result of the judgment is recorded.

C. Formal Description

The formal description is given in Algorithms 1–6.

D. Validity

The validity of the method is mathematically guaranteed
by attributing it to the properties of the cryptographic hash
function.

We omit detailed description of validity of the method α
due to page limit.

3For the simplicity of the mathematical proof, we assume that each Pi

submits their answer only once in the model. In practice, this restriction
is unnecessary, and in our proof of concept using Ethereum, which will be
described later, an answerer can submit an answer any number of times.
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Algorithm 3 Submission start phase
1: procedure O(hk ,content ,correctness)
2: send (aC , content)
3: return (hk ,content ,correctness)
4: end procedure
5: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
6: (from, d) ← receive
7: if from = aO ∧ phase = “announcement” ∧

Hash(hk , d) = hContent then
8: return (hk , “submission”, hContent ,

hCorrectness , d, {hAnswera}, correctness ′, {correcta})
9: end if

10: return (hk , phase , hContent , hCorrectness ,
content ′, {hAnswera}, correctness ′, {correcta})

11: end procedure

Algorithm 4 Submission phase
1: procedure Pi(hk )
2: Get content ′ from the return value of the most recent

action of C.
3: send (aC ,Hash(hk , answer i(content

′)∥aPi))
4: return (hk )
5: end procedure
6: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
7: (from, d) ← receive
8: if phase = “submission” ∧ hAnswer from = λ then
9: {newHAnswera} ← {d (a =

from), hAnswera (a ̸= from)}
10: return (hk , phase , hContent , hCorrectness ,

content ′, {newHAnswera}, correctness ′, {correcta})
11: end if
12: return (hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
13: end procedure

Algorithm 5 Judgment start phase
1: procedure O(hk ,content ,correctness)
2: send (aC , correctness)
3: return (hk ,content ,correctness)
4: end procedure
5: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
6: (from, d) ← receive
7: if from = aO ∧ phase = “submission” ∧

Hash(hk , d) = hCorrectness then
8: return (hk , “judgement”, hContent ,

hCorrectness , content ′, {hAnswera}, d, {correcta})
9: end if

10: return (hk , phase , hContent , hCorrectness ,
content ′, {hAnswera}, correctness ′, {correcta})

11: end procedure

Algorithm 6 Judgment phase
1: procedure Pi(hk )
2: Get content ′ from the return value of the most recent

action of C.
3: send (aC , answer i(content

′))
4: return (hk )
5: end procedure
6: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
7: (from, d) ← receive
8: if phase = “judgement” ∧ Hash(hk , d∥from) =

hAnswer from ∧ correct from = λ then
9: {newCorrecta} ← {correctness ′(d) (a =

from), correcta (a ̸= from)}
10: return (hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {newCorrecta})
11: end if
12: return (hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {correcta})
13: end procedure

1) Impossibility of Changing Exam Content: It can be
guaranteed that O cannot change the exam content after the
start of the announcement.

2) Impossibility of Changing the Correctness Judgment
Programs: It can be guaranteed that O cannot change the
correctness judgment program after the start of the announce-
ment.

3) Impossibility of Changing Answers: It can be guaranteed
that Pi cannot change their answer after submitting it.

4) Validity of the Results of the Correctness Judgment:
The above properties provide a corollary that guarantees the
validity of the result of the correctness judgments if no
sabotage attack is made.

5) Confidentiality of the Exam Content: It can be guaran-
teed that as long as O behaves correctly, Pi cannot know the
exam content before the submission start phase.

6) Confidentiality of the Correctness Judgment Programs:
It can be guaranteed that as long as O behaves correctly,
Pi cannot know the correctness judgment program before the
judgment start phase.

7) Confidentiality of Answers: It can be guaranteed that a
Pi cannot know the answer of another who behaves correctly
before the judgment start phase.

E. Discussion

We discuss the feasibility of applied attacks on the proposed
method α and the economic cost when the complexity of the
correctness judgment program is large.

1) Replay Attacks by Answerers: It is guaranteed that
answerers cannot know the answers of others. However, even
if they cannot know the answers of others, they may be able
to conduct a replay attack to steal the answers by reproducing
the communication of others. Our method is also resistant
to replay attacks because answerers do not simply hash their
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answer but combine it with their address before hashing. This
makes it impossible to steal the answers even if an answerer
reproduces the communication of others who have different
addresses.

2) Length Extension Attacks by Answerers: When answer-
ers know hk and Hash(hk ,m1), they may be able to compute
Hash(hk ,m1∥m2), where m2 is chosen by them. This attack
is called a length extension attack and is known to be effective
against MD5 and SHA-1.

In our method, they may be able to steal answers by using
a length extension attack. As a countermeasure, we should use
SHA-256 or Keccak-256, which are resistant to attacks. In our
proof of concept using Ethereum, we use Keccak-256.

3) Sabotage Attacks by Questioners: In our method, O
needs to actively follow the protocol. Therefore, O can per-
form a sabotage attack. As a countermeasure, we can make O
pay a deposit in cryptocurrency in advance and confiscate it
when O performs a sabotage attack. In our proof of concept
using Ethereum, we implement this feature.

4) When Exam Content or a Correctness Judgment Pro-
gram is Invalid: A malicious O may prepare invalid content
or correctness and conduct a meaningless exam. The only way
to prevent this attack is to perform a prior audit by a trusted
authority. However, in our method, content and correctness
are disclosed before the answers are disclosed, so it is possible
to prevent answers from being given to a malicious O.

5) When the Majority of Block Approvers are Bought Off:
Thus far, we have assumed that each transaction is approved
after some time. However, it is possible to bribe the majority
of block approvers to stop the approval of a transaction.

We believe that this attack is not feasible on major
blockchains because the following disadvantages arise when
block approvers participate in an attack:

First, if a mining pool participates in an attack, the social
credibility of the pool will be lost. In major PoW-based
blockchains such as Ethereum, all the major block approvers
are mining pools, so this disadvantage cannot be ignored.

Second, if a major block approver participates in an attack,
their blockchain loses its public trust. Therefore, the market
value of their cryptocurrency will decrease, and block approval
rewards will decrease.

Third, the risk of a 51% attack increases because the amount
of computational power needed to extend the main chain is
reduced during an attempt at this attack; a successful 51%
attack results in a loss of public trust in the blockchain.

Some rewards in addition to the above disadvantages must
be offered to multiple block approvers. For example, Ethereum
requires the acquisition of at least three mining pools [9].
Therefore, we believe that this attack is not feasible.

6) When the Complexity of the Correctness Judgment Pro-
gram is Large: In the proposed method α, the economic cost
of Pi becomes large when the complexity of correctness is
large. This is because the computation of correctness is done
on a blockchain. Therefore, we discuss the proposed method
β, which incorporates the concept of mutual evaluation.

V. PROPOSED METHOD Β
The proposed method β reduces the economic cost by mu-

tual evaluation among the answerers instead of a correctness
judgment on the blockchain.

A. Intuitive Description

1) (Announcement start phase—Submission phase) These
are the same as those of the proposed method α.

2) (Publication start phase) This is the same as the judg-
ment start phase of the proposed method α.

3) (Publication phase) Each Pi sends answer i(content ′) to
C to publish their answer. C computes the cryptographic
hash of the bitstring concatenation of the received data
and the source address and verifies that the hash matches
the hash recorded in Step 4. If it matches, C records
the source address as participantsn and the received
data as answers ′n, increments n, and records a uniformly
selected value from {0, . . . , n− 1} as r.

4) (Peer-review phase) Each Pi takes j such
that participantsj matches their own address

and sends correctness ′
(
answers ′(j+r) mod n

)
,

correctness ′
(
answers ′(j+r+1) mod n

)
, and

correctness ′
(
answers ′(j+r+2) mod n

)
to C to evaluate

the others’ answers. C takes j such that participantsj
matches the source address and pushes the received
data to correct (j+r) mod n, correct (j+r+1) mod n, and
correct (j+r+2) mod n. Finally, whether 2 or more True
are pushed to correctj determines the result of the
correctness judgment of the answerer whose address is
participantsj .

5) (Revision phase) Pi sends j to C if the result of the
correctness judgment of the answerer whose address is
participantsj is wrong. C revises the result by comput-
ing correctness ′(answersj).

B. Formal Description

The formal description is given in Algorithms 7–9. We omit
the phases before the publication phase because they are only
trivial modifications of the proposed method α.

C. Discussion

We discuss the incentives and the number of people for
mutual evaluation. The discussion of the proposed method α
in Section IV-E is also applicable to the proposed method β.

1) The Economic Cost: If the mutual evaluation is
done properly, the economic cost of Pi decreases to
O(|answer i(content)|) because nothing needs to be done in
the revision phase.

2) The Incentives: The discussion thus far does not take
into account the incentives for proper mutual evaluation, which
may not necessarily reduce the economic cost. As a counter-
measure, we can make Pi pay a deposit in cryptocurrency
when they publish their answer and confiscate it when they
evaluate others’ answers improperly. Furthermore, a Pi who
revises the result of a correctness judgment in the revision
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Algorithm 7 Publication phase
1: procedure Pi(hk )
2: Get content ′ from the return value of the most recent

action of C.
3: send (aC ,Hash(hk , answer i(content

′)))
4: return (hk )
5: end procedure
6: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {reviewedj}, n, r, {correctj})

7: (from, d) ← receive
8: if phase = “publication” ∧ Hash(hk , d∥from) =

hAnswer from ∧ from /∈ {participantsj | j ∈ {0, . . . , n−
1}} then

9: {newPartcipantsj} ← {participantsj (j ∈
{0, . . . , n− 1}), from (j = n)}

10: {newAnswersj} ← {answer j (j ∈ {0, . . . , n −
1}), d (j = n)}

11: {newReviewedj} ← {reviewed j (j ∈ {0, . . . , n−
1}), False (j = n)}

12: newN ← n+ 1
13: Choose newR uniformly from {0, . . . , n− 1}.
14: return (hk , phase , hContent ,

hCorrectness , content ′, {hAnswera},
correctness ′, {newParticipantsj}, {newAnswers ′j},
{newReviewedj}, newN , newR, {correctj})

15: end if
16: return (hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {reviewedj}, n, r, {correctj})

17: end procedure

phase can be compensated for the cost of the revision by
paying the confiscated cryptocurrency. In our proof of concept
using Ethereum, we implement this feature.

3) The Number of People: In the discussion thus far, the
number of people for mutual evaluation has been set to 3, but
this is an example, and the number is arbitrary in practice.

VI. PROOF OF CONCEPT

We implemented a decentralized programming contest plat-
form on Ethereum based on the proposed methods α and β.
The code is available at https://github.com/azonti/decentcoder.
The main branch corresponds to the proposed method α, and
the pm2 branch corresponds to the proposed method β.

Below, we propose solutions to the problems that emerged
during the implementation process and measure the economic
cost of the method using the implementation.

A. How to Distribute the Exam Content

When the proposed method is implemented as is, the exam
content is directly recorded on the blockchain. However,
the cost of recording data on the Ethereum blockchain is
high. Therefore, we implemented the following cost reduc-

Algorithm 8 Peer-review phase
1: procedure Pi(hk )
2: Get correctness ′, {participantsj}, {answers ′j}, n,

and r from the return value of the most recent action of
C.

3: {j′} ← {j ∈ {0, . . . , n− 1} | participantsj = aPi
}

4: send(
aC , correctness

′
(
answers ′(j′+r) mod n

)
,

correctness ′
(
answers ′(j′+r+1) mod n

)
,

correctness ′
(
answers ′(j′+r+2) mod n

))
5: return (hk )
6: end procedure
7: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {reviewedj}, n, r, {correctj})

8: (from, d1, d2, d3) ← receive
9: if phase = “publication” ∧ from ∈ {participantsj |

j ∈ {0, . . . , n − 1}} ∧ from /∈ {reviewed j | j ∈
{0, . . . , n− 1}} then

10: {j′} ← {j ∈ {0, . . . , n − 1} | participantsj =
from}

11: push d1 to correct (j′+r) mod n

12: push d2 to correct (j′+r+1) mod n

13: push d3 to correct (j′+r+2) mod n

14: {newReviewedj} ← {reviewed j (j ∈ {0, . . . , n−
1} \ {j′}), True (j = j′)}

15: return (hk , phase , hContent , hCorrectness ,
content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {newReviewedj}, n, r, {correctj})

16: end if
17: return (hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {reviewedj}, n, r, {correctj})

18: end procedure

Algorithm 9 Revision phase
1: procedure Pi(hk )
2: send (aC , j)
3: return (hk )
4: end procedure
5: procedure C(hk , phase , hContent , hCorrectness ,

content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {reviewedj}, n, r, {correctj})

6: (from, d) ← receive
7: if phase = “publication” ∧ d ∈ {0, . . . , n− 1} then
8: push correctness ′(answers ′d) to correctd 4 times
9: end if

10: return (hk , phase , hContent , hCorrectness ,
content ′, {hAnswera}, correctness ′, {participantsj},
{answers ′j}, {reviewedj}, n, r, {correctj})

11: end procedure
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tion method using the InterPlanetary File System (IPFS), a
distributed file system proposed by Benet [10]:

1) In the announcement start phase, instead of recording
the cryptographic hash of the exam content on the
blockchain, we record Advanced Encryption Standard
(AES)-encrypted exam content on IPFS and record the
IPFS path on the blockchain.

2) In the submission start phase, instead of recording the
exam content on the blockchain, the AES passphrase is
recorded on the blockchain.

Since the data on IPFS are content-addressed, it is possible
to achieve unchangeability similar to that of a cryptographic
hash function. However, since anyone who knows an IPFS
path can also know the content of the data, we use AES in
combination with this method to achieve confidentiality.

B. How to Submit Answers

In the proposed method, when an answerer submits their
answer, they submit the cryptographic hash of the bitstring
concatenation of their answer and their address. Then, the
hash is computed on the blockchain when their answer is
published and judged. However, this method requires loading
the entire answer into memory, which is costly. Therefore,
we implemented the following cost reduction method using
the EXTCODEHASH instruction proposed and introduced by
Johnson and Bylica [11]:

1) In the submission phase, the answerers submit the hash
of the bitstring concatenation of their answer’s hash and
their address. In other words, their answer is hashed
twice.

2) In the publication and judgment phase, their answer
is deployed on the blockchain as a contract. In the
blockchain, the EXTCODEHASH instruction is issued to
compute the hash of the answer, which is then combined
with the source address and hashed again.

C. How to Check the Purity of Programs

The proposed method requires that correctness judgment
programs be pure; i.e., programs must not change their behav-
ior according to the environment. Otherwise, some judgment
results will not be uniquely determined.

However, the Ethereum virtual machine has instructions to
read values from the environment4, which must be prohibited.

It may seem sufficient to scan the instructions in a program
one by one to make sure that there are no instructions that
should be prohibited. However, since there are also data areas
in a program, interpreting all data areas as instructions will
result in false positives with nonnegligible probability. We
devised the following method to reduce the probability of false
positives to a practical level:

1) Scan the instructions in a program one by one from the
beginning. If an instruction that should be prohibited

4ADDRESS, BALANCE, ORIGIN, CALLER, GASPRICE, EXTCODESIZE,
EXTCODECOPY, EXTCODEHASH, BLOCKHASH, COINBASE, TIMESTAMP,
NUMBER, DIFFICULTY, GASLIMIT, SLOAD, GAS, CALL, CALLCODE,
DELEGATECALL, and STATICCALL

Table I
ECONOMIC COST

Method For a Questioner (USD) For an Answerer (USD)

α 38.66 48.36
β 49.99 33.56

is encountered, go to step 2. If an invalid opcode,
STOP, JUMP, RETURN, REVERT, or SELFDESTRUCT
is encountered, go to Step 3.

2) If JUMP, JUMPI, RETURN, or REVERT is encountered,
determine that the program is nonpure. If an invalid
opcode, STOP, or SELFDESTRUCT is encountered, go
to step 3.

3) If JUMPDEST is encountered, go to Step 1.
The validity of this method is explained as follows: Only

areas from the beginning or JUMPDEST to invalid opcodes,
STOP, JUMP, RETURN, REVERT, or SELFDESTRUCT will
be executed. Therefore, only such areas need to be monitored.
Additionally, even if a prohibited instruction is executed, it
will be harmless because environment-dependent values will
be discarded unless JUMP, JUMPI, RETURN, or REVERT
are executed afterwards. Hence, we only need to detect such
situations.

D. Economic Cost Evaluation

We evaluated the economic cost of this implementation. The
data used to organize the pseudocontest for the evaluation are
available at https://github.com/azonti/dbc001. Table I shows
the evaluation results. The gas price, which indicates the
amount of cryptocurrency per instruction, was set to 25×10−9

ETH, and 1 ETH was set to 601.4 USD. The former is the
median gas price of newly approved transactions on December
6, 2020 [12], and the latter is the closing price of Bibox, a
cryptocurrency exchange, on December 6, 2020 [13].

E. Future Instruction Implementations Will Lower the Eco-
nomic Cost

As mentioned earlier, this implementation guarantees the
purity of correctness judgment programs by scanning the
instructions. However, when the instructions below are imple-
mented in the future, there will be no need to scan programs,
and the economic cost will decrease.

First, PURE_CALL is needed. Programs invoked through
this instruction cannot execute instructions that read values
from the environment. This instruction was proposed by Bu-
terin [14] in 2017 but has not yet been implemented.

Second, SANDBOXED_CALL is required. Programs called
through this instruction cannot call any other program. This
instruction was proposed by Zoltu [15] in 2016 but has not
yet been implemented.

Once the above instructions are implemented, we can
prohibit the virtual machine from reading values from the
environment. Thus, the need to scan programs is eliminated,
and the economic cost is reduced.
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Table II
ECONOMIC COST

WHEN PURE_CALL AND SANDBOXED_CALL ARE IMPLEMENTED

Method For a Questioner (USD) For an Answerer (USD)

α 37.83 25.14
β 49.16 10.59

We estimated the economic cost of implementing these
instructions. The data used for the estimation are the same
as in Section VI-D. Table II shows the estimation results.

VII. CONCLUSION

We proposed a decentralized examination protocol that can
handle a set of correct answers defined by a program. The va-
lidity of the protocol, which consists of unchangeabilities and
confidentialities, is mathematically guaranteed by attributing
it to the properties of cryptographic hash functions. We also
studied the feasibility of applied attacks such as replay attacks
and length extension attacks and proposed countermeasures
against such attacks.

We also implemented a decentralized programming contest
platform based on the proposed method on Ethereum and
demonstrated the feasibility of the method. In addition, we
proposed solutions to the problems that emerged during the
implementation process and measured the economic cost of the
method using the implementation. As a result, we confirmed
that the method is feasible for approximately 30–40 USD.
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