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Abstract—To improve the speed of deep learning tasks, the
models of Deep Neural Network (DNN) could be trained in a
computational node where the parameters for the models are
refined by multiple GPUs in the node parallelly. A number
of previous works have studied parallel learning focus on the
improvement of one single task. In such a situation, the whole
hardware resources can be fully utilized for that task. However, in
a real system, it is usual to have several learning tasks running
in the same node. So in this paper, we propose an adaptive
allocation of computing resources for multiple learning tasks,
with the knowledge of current learning phase for each task. In
experiments we train VGG-16 models using CIFAR-10 dataset
on a node with multiple GPUs, and the results show that with
adaptive adjustment for computing resources, the training time
can achieve a decrease of 4.70% with unchanged per task batch
size. Besides, the experiment that mixing up ResNet-50 and VGG-
16 models shows that this computing resources adjustment is
effective for different models.

Index Terms—deep learning, GPU, computing resources

I. INTRODUCTION

For the past decade, Deep Learning has become a significant
tool to solve once unsolvable problems. Since training a deep
learning model is a time-consuming task, it is usual that a DL
task be solved parallelly using multiple GPUs. Distributing
a Deep Learning task over multiple GPUs can accelerate the
learning outstandingly compared to using CPUs on one node.
However, it is still extremely hard to train a large dataset like
ImageNet [1] using limited GPU resources, unless one can
utilize tens of hundreds of GPUs [2]. Therefore, it is still
meaningful to devise good algorithms to accelerate the training
speed.

With parallelization, the computational resources in one
node can be fully utilized to speed up the training process.
Many factors about deep learning will affect the eventual
performance of learning tasks, such as batch size [3] [4] [5] [6]
and learning rate [9] [10].

Previous works mostly focus on one simple learning task
operating in a cluster, attempting to adjust some hyper-
parameters like batch size or learning rate to speed up the
convergence of that task. In this paper, we found that when
multiple learning tasks are at different learning phases, it
is possible to accelerate the convergence of all the tasks
by adjusting computing resources allocated to each task.

This work was supported by New Energy and Industrial Technology
Development Organization (NEDO).

Besides, we developed an allocator to adjust the computational
resources dynamically.

The remainder of this paper will be organized as follows.
Related work is discussed in Section II. In Section III, we
introduce the background of this paper. In Section IV, we give
an overview of the impact of multiple learning tasks executed
in a system in the same time. And dynamic adjustment of
process number will be discussed in Section V. In Section
VI, we present the experiments and results. Conclusions and
future work are given in Section VII.

II. RELATED WORK

To accelerate a deep learning task, one feasible way is
to change the hyper-parameters dynamically during training
process. Learning rate decay (lrDecay) is a technique to adjust
the learning rate as the training proceeds. By using different
learing rate in different learning phases, the models could
achieve a faster convergence speed. Modern DNN models
are trained by SGD with lrDecay, such as ResNet-50 [9] and
DenseNet [10].

Another popular approach is to adjust the batch size as the
training proceeds. Devarakonda et al. [5] propose that with
varying batch size, the learning process can achieve a speedup
of 6.25x to reach almost the same test error, compared to the
approach which uses fixed batch size for the whole training.
This paper researches the relationship between convergence
time and computational resources, although one experiment
about varying batch size setting is conducted, we mainly focus
on the experiments where the batch sizes for the tasks are the
same.

There are several proposed papers that discuss computing
resources allocation for deep learning tasks. Takahashi et
al. [12] proposed a static scheduling framework to profile the
processing time for several training tasks, and schedule the
tasks across a CPU cluster based on that result. Chaudhary et
al. [13] designed a algorithm to share the GPU throughput
among cluster users fairly using time-slicing method in a
heterogeneous computational environment. The computational
resources used in this papre are GPUs, and each has the same
performance.

III. BACKGROUND

First of all, we provide an introduction to the overview of
parallel deep learning. Then, the concept of learning phase
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will be discussed. Lastly, we change the number of processes
allocated for one single learning tasks, and present the impact
on performance.

A. Parallel deep learning

Image classification is one of the problems that were consid-
ered unsolvable by computer programs until the birth of deep
neural networks. In a discriminative way, we use a training
dataset to feed the deep neural network model, updating the
parameters for the network gradually based on the loss rate,
and aim to obtain a network model that could achieve high
accuracy on a test set.

The update of parameters is performed by Gradient Decent
(GD) method to find the optimal parameters. Since the huge
number of data samples in datasets like CIFAR-10 and Im-
agenet, it is unfeasible to compute the loss function for the
entire dataset in one round of parameter update. Therefore,
the mini-batch Stochastic Gradient Decent (mini-batch SGD)
is a more fashionable way to train models on big datasets.

Furthermore, training several models parallelly in a com-
putational node using multiple CPUs or GPUs could speed
up the training time. When training parallelly, some commu-
nication methods such as gossip or all-reduce are necessary
for synchronizing the parameters of different models across
processes.

Fig. 1 and Fig. 2 show the accuracy and loss rate curve
of training of a VGG-16 network under different settings for
number of process.

B. Learning phases

Liu et al. [6] presented adapting different batch sizes for
different period in the learning task can result in faster
convergence. The reason is that at the begining of training, the
value of loss for the model is quite large, so the descent of
loss could be sharply no matter how many batch size is used
in one round of update. Thus, because of the smaller batch
size, the time spent to finish the same number of iterations
could be reduced.

On the contrary, when the training process lasts for a
certain period, the descent of loss function becomes smaller
and smaller, the correct update of parameters is demanded,
comparing to the time consumed in one iteration. That means
although the time for one update could be speeded up, due
to the lack of generalization incurred by the selection of
small batch size, updating the parameter to the optimal would
become very hard. As a result, reaching the convergence state
would take more time conversely. Therefore, switching to a
larger batch size helps to alleviate this problem.

C. Number of processeses for single task

When training a deep learning model on a GPU node, the
number of processes is usually set to the same number of
GPUs.

To do all-reduce across all the processes of the same
learning task, we need some library to do all the low-level
communication and data transfer. Deep learning frameworks

Fig. 1. Accuracy of VGG-16 model with varying number of processes.

Fig. 2. Loss rate of VGG-16 model with varying number of processes.

provide several such libraries. NCCL is one communication
backend which is prepared in PyTorch [7], and since it cur-
rently provides the best distributed GPU training performance,
NCCL is used in this paper.

IV. MULTIPLE LEARNING TASKS

As Liu et al. [6] revealed, for two tasks which are in
different learning stages, the task at the early stages could
use a smaller batch size to reduce the time for one iteration,
while a larger batch size is needed for the task at late stages
to perform an accurate update of parameters.

Based on this thought, we make two deep learning tasks
start at different times, and change the number of allocated
processes for each task when the younger task starts training.
we assume that the node has 4 GPUs and there will be 4
processes. Fig. 3 shows the loss rate of the VGG-16 network
when training using 4 GPUs.

The gap between the younger task and the older task is
set to the time of 200 seconds. Besides, we set the criteria
of the convergence of models to the loss rate achieved when
the model has been trained for 300 seconds. The reason why
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Fig. 3. Single task when trained by 4 GPUs.

Fig. 4. Two tasks when trained by 4 GPUs, each task is allocated 2 GPUs
when they are being trained simultaneously. Batch size for each process is
set to 128.

we set the loss rate instead of the number of iterations is
that, we define the convergence of a neural network model to
be the loss rate on datas. When the younger task begins its
training process, since the GPU resources are necessary, the
older task has to release some GPU cards. At first the system
will make an effort to split up the GPU cards between each
learning task. In this scenario, each task will be allocated 2
GPUs, respectively. Since the available GPUs for each task has
reduced, the learning processes suffer performance degradation
to some extent. After the older task finished, the younger one
can make use of all the GPU cards to continue the remaining
learning process. The loss rate with time consumption is
displayed in Fig. 4.

V. ADAPTIVE ADJUSTMENT OF NUMBER OF PROCESSES

Adjustment of the number of the process for each task
effectively changes the respective usage of GPU resources.
In this section, we propose a naive adjustment method for the
number of processes, which automatically determine the ade-
quate number applied to each task. The basic idea of automatic

Fig. 5. Delta of loss rate in each iteration, number of processes is 4.

Fig. 6. Delta of loss rate in 100 iterations, number of processes is 4.

adjustment is that the need for computational resources varies
when the learning process goes on. As concluded in Section
II, the learning task which is at the later stage tends to utilize
more data samples to complete one update of the parameters.
This will be verified in experiments where the batch size
for each process remains a constant number. Furthermore,
by varying per process batch size, but keep total batch sizes
equal for all the tasks, we can accelerate the convergence of
tasks which begin its training process earlier. Then the trade-
off occurs to shorten the overall training time. Therefore, we
aim to design a GPU resource allocator that has access to the
information of the ongoing tasks and make decisions on the
number of processes based on the collected information.

The motivation to overlap the execution of multiple learning
tasks instead of finishing the training one after another is from
the assumption that when lesser GPUs are used for training,
the overhead of communication among the processes will be
reduced.

To figure out at which stage the current task is, the allocator
will use information about the delta of loss rate. According to
Fig. 3, the delta of loss rate differs across different phases
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Fig. 7. Architecture of the allocator

in the learning process. Generally, the delta of loss tends to
decrease while the training continues. In the gradient descent
method, the loss rate is used to measure how far the targets
of each batch data samples computed by the neural network
model is from the actual labels. As shown in Fig. 5, the delta
of loss rate in each iteration is a random number and is not
sufficient to use to determine the learning stage. However,
since the loss rate is destined to decline after all, during a
long enough time, we can observe the difference in different
periods.

When we set the period equal to 100 iterations of training,
the contrast will be more clear. Fig. 6 shows the delta of loss
rate with time consumption, while the delta is the sum of every
100 iterations. Therefore, it is able to classify a task which is
totally new and a task which has been trained a few iterations.

The architecture of the allocator is displayed in Fig. 7. The
whole deep learning system is managed by the allocator, which
means that every time a new task prepares to start training,
the allocator should be notified. Besides, the allocator needs
to have access to the details of the situation of each task (e.g.,
loss rate, time consumption, allocated number of processes).

This brings about the first limitation of our research. As a
consequence of the necessity that the allocator should obtain
all the information of the ongoing tasks, an outside task
which is not under the charge of the allocator will fail the
system, since there exists the possibility that different tasks
use the same GPU card. Another limitation is that we only
concern about the scenario that a new task using non-pre-
trained models while the ongoing task is about to converge.

The proposed method consists of a couple of steps.

1) When a new task is about to begin training, the allocator
is notified.

2) The allocator continues the training process of each task
for 100 iterations, and calculates the delta of loss rate.

3) Based on the information collected, the allocator will
judge which task is older and which is younger. This
determination is conducted simply by checking which
task’s loss delta is larger.

4) The allocator will decide to allocate approriate number

TABLE I
EXPERIMENTAL SETUP

CPU Intel Xeon CPU E5-2698 v4 @ 2.20GHz
GPU NVIDIA Tesla V100-PCIE-32GB * 4
OS Ubuntu 20.04 LTS Linux-5.4.0

of processes for all the tasks.
Regarding step 4, since the node we use in experiments has

4 GPU cards, therefore we can only apply the ratio of number
of processes for older-younger task of 3 to 1 and 2 to 2 to
verify the effect of accelerate the execution of older task. In
fact, there are occasions that a machine has more than 4 GPU
cards attached to itself, thus a different GPU cards ratio other
than 3 vs 1 and 2 vs 2 is possible. How to determine the ratio
(e.g. 5 vs 3, 6 vs 2 or 7 vs 1) of computational resources for
that scenario is considered a future work.

VI. EXPERIMENTS

In this section, we will describe the experimental setup.
Then, the results will be shown with different policy for batch
size. Besides, the reasons for the results will be discussed.

A. Experimental setup

The experiment environment is described in this subsection.
Table I lists the hardware used in all the experiments. All the
experiments are conducted on a single server which has 4
GPU cards attached to itself. PyTorch framework is used to
implement the system. The neural network model to be used in
experiments is VGG-16. The loss function we used to calculate
the loss rate of the model is cross entropy loss function.
Dataset is CIFAR-10. Since the communication between nodes
does not happen, the network configuration is omitted.

With only 4 GPUs are available in the server, there are 3
ways to allocate the processes to older task and younger task:
1-3, 2-2, 3-1. While i-k means ratio of allocated processes
to older task and younger task is set to i to j. In our
experiments, we use ratio of 3-1 and 2-2 to indicate training
with or without adjustment, respectively. When a task starts its
training process, the allocator will run the first 100 iterations
to determine if it is a new task based on the values observed in
Fig. 6, after that the adjustment is performed. The experiments
of ratio of 1-3 are conducted for completeness. The condition
to terminate a learning task is that when the loss rate reaches
the same level as one single tasks achieves using all the 4
GPUs to train 300 seconds.

In addition to adjustment of computing resources, the
dataset will be reallocated for each process as well. Moreover,
the batch size will also have to be adjusted if neccessary.

B. Batch size equal across processes

In experiments, the older task will begin training at first.
Then the younger task will start after 200 seconds. At the
meantime, the allocator will determine which task need more
GPU resources, and allocates 3 GPUs to that one.

After the younger task joins the system, allocator will
observe the loss rate of both tasks for the first 100 iterations.
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Fig. 8. Learning curves with batch size set to 128 per process, VGG-16.

TABLE II
EXPERIMENTAL RESULTS OF TIME REDUCTION

Reduced by
Batch size 128

per process
Batch size 512

per task
Total 2.72% 4.70%
Older task 23.01% 12.76%
Younger task 4.03% 7.26%

Then the allocation of GPUs is carried out by allocator based
on the delta of loss rate.

First of all, we set the batch size, which is 128, be equal
across all the processes. That means for tasks which have
different number of process will have different batch size
settings. Certainly, applying the same batch size for each
process leads to the fact that adjustment of computating
resources will cause adjustment of total batch size for the tasks
at the meantime, which makes it ambiguous that which kind of
adjustment contributes more to the performance improvement.

Because the curve for loss rate is quite random, in order
to determine whether one task converged or not, we use the
average loss rate value for 10 iterations.

Fig. 8 shows the learning curves under 3 different process
ratio. Fig. 9 shows the time consumption in each part. During
the period when two tasks coexist, if the allocator allocates
more processes to the older task (3-1), it will reach to the
convergence point 100.82 seconds earlier, compared to the one
with no adjustment (2-2). As a result, the training time can
achieve acceleration of time efficiency of 2.72%. For each
task, the training time is shortened by 23.01% for older task,
and 4.03% for younger task, respectively.

This proves that our intention to enlarge the actual batch
size for older task by changing the computing resources ratio
is workable to shorten the overall training time.

C. Batch size equal across tasks

In this group of experiments, we keep the batch size
equal even the numbers of processes for tasks are changed.
Concretely, the batch size will be set to 512, which is the

Fig. 9. Time comparison with batch size set to 128 per process, VGG-16.
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Fig. 10. Learning curves with batch size set to 512 per task, VGG-16.

number of batch size for one single task. In our experiments,
the batch sizes for task which has three processes will be set
to 170, 171 and 171. There are some occasions that the batch
size is not divisible by the number of processes. In that case,
the batch size for one specific process is adjusted to assure
that 512 be the sum of all the batch sizes. Thus, the impact
of batch size alteration on performance is eliminated.

Fig. 10 and 11 show the learning curve and time com-
parison when training with 3 different process ratio. The
total training time is reduced 4.70% from 567.50 seconds to
540.81 seconds. For each task, the training time is shortened
by 12.76% for older task, and 7.26% for younger task,
respectively. Fig. 10 also shows that total training time is ex-
tended with lesser computing resources allocated to older task.
Furthermore, Fig. 12 shows that training by overlapping two
learning tasks while applying adaptive computing resources
adjustment is faster than training without overlapping.

Therefore, our assumption that the trade-off for shortening
the execution of older task could improve overall performance
is proven by the results. In addition, by overlapping the
execution of multiple tasks, the hardware is fully utilized with
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Fig. 11. Time comparison with batch size set to 512 per task, VGG-16.
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Fig. 12. Learning curves comparison between overlap and non-overlap
training, with batch size set to 512 per task, VGG-16.

lower overhead.
At last, the experimental results of reduction of training

time under different settings of batch sizes, compared between
training with adaptive adjustment and without adjustment, is
shown in Table II.

D. Tasks using different neural network models

To verify that this adjustment is effective for the scenario
where different types of model are used in tasks, we conducted
an experiment that Resnet-50 and VGG-16 models were
applied to the older and younger tasks respectively.

The batch size setting remains the same as that in the last
subsection, i.e. each task computes 512 pieces of images per
iteration.

In this experiment, we compared the training convergence
speed between process ratio of (2-2) and that of (3-1). The
condition used to judge whether each task reaches the conver-
gence state remains the same as previous experiments stated
in this paper.

Fig. 13 shows the learning curve of the experiment which
the Resnet-50 and VGG-16 models are applied to the older
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Fig. 13. Learning curves with the older task using ResNet-50 and the yonger
task using VGG-16, batch size set to 512 per task.

task and the yonger task respectively. The total training time
is reduced 7.11% from 604.25 seconds to 561.26 seconds, and
the reduction percentage is 11.20% and 10.63% for the older
task and the younger task. These results demonstrate that the
adjustment is effective for tasks that are using different neural
network models.

VII. CONCLUSIONS

We have showed that in a deep learning system which
have multiple ongoing learning tasks, the tasks will affect the
performance of each other. Then we showed that this problem
can be solved by change the number of allocated processes
for each task, based on the information of learning process.
Furthermore, we propose a naive method to detech which
phase the specific task in on. We conducted experiments with
batch size equal across all processes and across all learning
tasks. The results of experiments showed that with adaptive
adjustment of number of processes, the decrease in training
time for all the tasks can be achieved. Moreover, the reduction
in training time is overserved in the experiment that each task
uses different models.

We proved that the trade-off for shortening the execution of
older task could improve overall performance. In addition, by
overlapping the execution of multiple tasks, the hardware is
fully utilized with lower overhead.

In this paper, the number of learning tasks is limited to two
in our research. Actually, the number of tasks being executed
simultaneously in a node may be more than that. Besides, in
a node that has more than 4 GPUs, there’s more room for
adjustment of computing resources. The algorithm to allocate
appropriate computing resources in such scenario is a future
work.

Resources allocation in learning tasks distributed over sev-
eral nodes connected by network is another future work.
Since the network overhead is incurred, the method to adjust
resources need to be changed.
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