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Abstract—In general, deep neural networks (DNNs) achieve
higher accuracy as the amount of training data increases.
However, training data are often privacy sensitive, and they may
not be collected. There are several methods that leave the training
data decentralized in a wide area network and share models.
These methods update the models locally based on stochastic
gradient descent (SGD) and communicate to aggregate the
models. The network bandwidth, training data, and machines are
heterogeneous in a wide area network unlike distributed DNNs
which use a computer cluster. Due to heterogeneity, the methods
using synchronous communication, such as all-reduce SGD, are
not suitable, and gossip SGD using asynchronous communication
is a dominant method. In this paper, we show that when the
network bandwidth is heterogeneous, conventional gossip SGD
causes network congestion, and the learning efficiency is not
greatly different from the case in which the network bandwidth
is homogeneous.

We show that the congestion problem can be solved by adjust-
ing the communication frequency, that is, by training multiple
times and communicating once. In many works, learning in
local nodes and communicating with other nodes are alternated.
Furthermore, we propose a warm-up technique to improve the
learning efficiency. This proposed technique decreases the amount
of communication with nodes that require a long communication
time. We verify the effect of the proposed technique in experi-
ments using CIFAR-10 and CIFAR-100.

Index Terms—a wide area network, gossip, DNNs

I. INTRODUCTION

Deep neural networks (DNNs) are used as a machine
learning method and have had an impact on many fields,
including image recognition, speech recognition and language
processing. When using DNNs, it is necessary to prepare the
training data to increase accuracy. For example, data from
284335 patients were trained on in a study to predict age,
gender, smoking status, systolic blood pressure and major
adverse cardiac events from retinal images [1].

However, training data such as personal medical data and
genetic data obtained from hospitals and images stored in
smartphones are often privacy sensitive, and they may not be
collected. In this case, the training data are left decentralized
in a wide area network.

In the case of a wide area network, gossip SGD [2]–[4],
using the asynchronous gossip communication method to share
models, is the most common method.

In the case of normally distributed DNNs using a computer
cluster but not a wide area network, methods using a parameter

server to share the models [5]–[9] and all-reduce SGD [3],
[10]–[15] using the synchronous all-reduce communication
method to share the models are studied. However, neither
type of method is suitable in a wide area network. Unlike
the case of distributed DNNs using a computer cluster, in a
wide area network, the network delay is long and the network
bandwidth is narrow. Furthermore, the network bandwidth, the
training data and the machines are heterogeneous. Due to this
heterogeneity, communication between parameter servers and
clients becomes a bottleneck. Since all-reduce SGD uses a
synchronous communication method, it is difficult to absorb
heterogeneity, and this method is inferior to gossip SGD using
the asynchronous communication method in terms of fault
tolerance.

We found that when the network bandwidth is heteroge-
neous, conventional gossip SGD causes network congestion.
We show using experiments that when network congestion
occurs, increasing wide-bandwidth nodes does not improve
the learning efficiency. We show that the congestion problem
arises due to the ratio of communication time to training time
and can be solved by adjusting the communication frequency
and decreasing the proportion of communication time. Fur-
thermore, we propose a warm-up technique to maintain the
accuracy of the models and improve learning efficiency. This
proposed technique adjusts the communication destination
selection probability according to the communication time.

The remainder of this paper is organized as follows: Sec-
tion II introduces related work. Section III introduces con-
ventional gossip SGD and the congestion problem in a wide
area network. Section IV discusses the cause of the congestion
problem and proposes a solution and a warm-up technique.
Section V discusses the experiments and verifies the effect of
the solution and a warm-up technique proposed in Section IV.
Section VI provides conclusions and future work.

II. RELATED WORK

Gossip learning [16] is a machine learning method in a
wide area network. This method learns without moving the
training data from nodes for privacy reasons, and it uses gossip
as a communication method. However, the target of gossip
learning is machine learning that uses on-line learning. Gossip
learning does not apply to DNNs because DNNs use mini-
batch learning.
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Algorithm 1 Gossip SGD (pull; run on client i)
1: function CLIENT LEARN
2: Initialize:
3: w0,i := w0, t:=0
4: loop
5: shuffle(Xi)
6: for minibatch x ∈ Xi do
7: wt+1,i ← wt,i − α∇Fi(wt,i; x)
8: t← t+ 1
9: if t ≡ 0 mod T then

10: choose j at random
11: receive(wj)
12: wt,i ←average(wt,i, wj)
13: end if
14: end for
15: end loop
16: end function

There are many related works about distributed DNNs
using clusters rather than a wide area network. Hop [17]
and Prague [18] proposed heterogeneity-aware decentralized
training. These works assume that the computation capability
is heterogeneous but do not assume that the network is hetero-
geneous. Goyal et al. [10] proposes a method that improves
the learning efficiency by using a large mini-batch size. There
are several methods that use a large mini-batch size [11], [12].
Lin et al. [13] proposes a method that compresses the gradient
in order to communicate without decreasing accuracy and
achieves a gradient ratio of up to 600. Shi et al. [14] proposes
MG-WFBP, which combines computation and communication
to decrease the learning time. MG-WFBP is proposed to
improve WFBP [15]. Yu et al. [9] proposes a method that is
tolerant to unreliable networks. There are many other works
in distributed DNNs [3]–[8].

Federated Learning [19] trains DNNs using decentralized
data. This method does not move the training data, as gossip
learning does. This method uses a parameter server and
assumes that the performance of the server is much higher
than that of the clients; therefore, this method does not assume
a fully distributed environment, which is our target.

III. CONGESTION PROBLEM IN GOSSIP SGD

In this section, we first introduce gossip SGD, which is
a distributed DNN method. Then, we present the congestion
problem for gossip SGD in a wide area network.

A. Gossip SGD

Gossip SGD uses the asynchronous communication method
gossip to share models. Gossip communicates asynchronously
and autonomously to share complete information loosely.

Algorithm 1 is the pseudo-code of pull-gossip SGD. Each
node uses the training data Xi of the node to update the model
based on SGD. In this paper, we refer to the amount of mini-
batch data trained in a single training iteration of a single
node as the batch size. Each node regularly communicates
asynchronously with a uniformly and randomly selected node
j and takes the average of the models. The average of the
models is the average of each parameter of wi and wj . These
updates are repeated, and nodes share the model that reflects
the data of whole nodes. T is the communication frequency
used to share the model to other nodes. Jin et al. uses T =
1 [3].

Push-gossip SGD is the other gossip SGD method, but it
is not suitable for use with the method proposed in Sub-
section IV-B. Each node uses the training data of the node
to update the model. Then, each node regularly sends the
model to uniformly and randomly selected nodes and takes the
average of the models received during the training process.

B. Congestion in A Wide Area Network

Gossip SGD is a dominant method in a wide area network.
The network bandwidth, training data, and machines are
heterogeneous in a wide area network. Gossip SGD using
asynchronous communication is a good match for heterogene-
ity.

However, we found that when the network bandwidth
is heterogeneous, conventional gossip SGD causes network
congestion in communicating with narrow-bandwidth nodes.
Figure 1a shows the communication status of each node. A
separate and continuous line corresponds to a single commu-
nication. The number of nodes is 8. The detailed experimental
setting is presented in Section V. The horizontal axis repre-
sents the learning time, and the vertical axis represents the IDs
of nodes. Nodes with IDs less than 6 have wide bandwidths,
and the other nodes have narrow bandwidths. The model size
in this experiment is 54 MiB, and the narrow bandwidth is
1.0 Gbps. Therefore, the communication time is at most:

54× 220 × 8

1.0× 109
' 0.5 [s].

However, in Figure 1a, there are communications with longer
times than the maximum time of 0.5 seconds. This means that
network congestion occurs.

Figure 1b shows a learning curve. “wide” indicates the
number of wide-bandwidth nodes. As shown in Figure 1b,
learning efficiency does not vary much as the number of wide
bandwidth nodes increases.

From the above results, when network congestion occurs,
increasing the number of wide-bandwidth nodes does not
improve the learning efficiency. This is the congestion prob-
lem of conventional gossip SGD in a wide area network
that we found. When network congestion occurs, nodes act
as if they are communicating synchronously with narrow-
bandwidth nodes. Thus, conventional gossip SGD does not
utilize asynchrony.

IV. A WARM-UP TECHNIQUE

This section shows a cause and a solution of the congestion
problem for gossip SGD in a wide area network. Furthermore,
we propose a warm-up technique that improves learning
efficiency.

A. Requirements of Communication Frequency

In gossip SGD, where bandwidth is heterogeneous in a
wide area network, the communication time between wide-
bandwidth nodes is long. However, the communication time
between a wide-bandwidth node and a narrow-bandwidth node
is short. Thus, narrow-bandwidth nodes frequently commu-
nicate with wide-bandwidth nodes, and the communication
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(a) Communication status when the num-
ber of wide-bandwidth nodes is 6. Nodes
with an ID less than 6 have wide band-
widths.
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Fig. 1. Conventional gossip SGD.

time can be longer than the average communication interval.
In this case, a narrow-bandwidth node has a waiting time
for communication with other nodes, and network congestion
occurs. In other words, if node i satisfies the following
inequality, network congestion occurs.

1

K − 1

∑
j 6=i

(T × E [Gj ] + E [Cj ]) < E [Ci] (1)

Let K, T , G, C, and E be the number of nodes, communi-
cation frequency, computation time of the gradient, commu-
nication time, and expected value, respectively. Here, since
gossip SGD uses multiple nodes, K > 1. Equation 1 shows
that increasing T × E [Gj ] or T resolves network congestion.

Therefore, the requirement for all nodes to resolve network
congestion in gossip SGD is:

T ≥
(K − 1)E [Ci]−

∑
j 6=i E [Cj ]∑

j 6=i E [Gj ]
.

B. Warm-up

We propose a warm-up technique to accelerate learning
convergence. This method adjusts the communication destina-
tion selection probability according to the communication time
at the beginning of learning. DNNs achieve higher accuracy
as the amount of training data increases. If the selection
probability is not uniformly random, the accuracy may be low.

However, training with little data can improve accuracy at
the beginning of learning. Thus, the warm-up technique is
effective because nodes frequently communicate with wide-
bandwidth nodes to decrease the communication time.

Push-gossip SGD is not suitable for this method because
the frequency of receiving models in narrow-bandwidth nodes
is less than it is when the selection probability is uniformly
random. On the other hand, pull-gossip SGD does not decrease
the frequency of receiving models in all nodes.

We propose that each node should send the measured
communication time information to each other and share it.
Nodes need to share communication time information because
a node cannot recognize the bandwidth of nodes that are
wider than its bandwidth in its measured time. When a node
sends a model, the sending node and receiving node send their
communication time information. In this method, nodes cannot
recognize the widest bandwidth. For example, if the bandwidth

Algorithm 2 Gossip SGD (pull) + warm-up (run on client i)
1: function CLIENT LEARN
2: Initialize:
3: w0,i := w0, t := 0, ci := {INF, INF, ..., INF}
4: loop
5: shuffle(Xi)
6: for minibatch x ∈ Xi do
7: wt+1,i ← wt,i − α∇Fi(wt,i; x)
8: t← t+ 1
9: if t ≡ 0 mod T then

10: p:=
{

1

ci,k

}K

k=1
11: pi ← 0
12: choose j on p
13: send(ci)
14: receive(cj , wj)
15: c :=measured communication time()
16: ci,j ←UPDATE TIME(ci,j , c)
17: ci ←UPDATE TIMES(ci, cj)
18: wt,i ←average(wt,i, wj)
19: end if
20: end for
21: end loop
22: end function
23: function UPDATE TIME(ci, cj )
24: if (1− threshold)× ci > cj then
25: ci ← cj
26: else if (1 + threshold)× ci < cj then

27: ci ←
ci + cj

2
28: end if
29: return ci
30: end function
31: function UPDATE TIMES(ci, cj )
32: for k ∈ K do
33: ci,k ←UPDATE TIME(ci,k, cj,k)
34: end for
35: return ci
36: end function

of one node is different, the nodes falsely conclude that all
nodes have the same bandwidth.

We assume that the network scale is a local area network
(LAN) or metropolitan area network (MAN) and that the main
factor of a communication bottleneck is the performance of the
nodes. When the network scale is larger than that of a MAN
and the network latency is high, this method of estimating the
communication time is not sufficient. We leave this issue as
the future work.

Algorithm 2 is the pseudo-code of pull-gossip SGD and a
warm-up technique. ci is the communication time information,
and p is the communication destination selection probability.
Each node uses the training data Xi, as in Algorithm 1.
Each node selects a communication destination based on the
selection probability p; the selection is not uniformly random.

Proc. 18th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2021), January 2021



TABLE I
EXPERIMENTAL ENVIRONMENT.
OS Ubuntu 16.04.2 LTS

Kernel Linux 4.4.0-79-generic
CPU Intel Xeon E5-2698 v4
GPU Tesla P100-PCIE-16GB

TABLE II
ACCURACY WHEN THE BATCH SIZE VARIES.

Batch size Accuracy
64 87.1%

128 87.5%
256 87.4%
512 87.7%

(a) The number of wide-
bandwidth nodes is 0.

Batch size Accuracy
64 87.0%

128 87.1%
256 87.5%
512 87.5%

(b) The number of wide-
bandwidth nodes is 8.

pj is the reciprocal of the communication time ci,j with node
j, and pi ← 0 because a node does not communicate with its
own node.

The communication time information ci of node i uses the
measured communication time c and received communication
time information cj of node j to update ci. If cj,k is less than
the threshold of ci,k, ci,k is updated to cj,k. Otherwise, if ci,k
and cj,k are close, ci,k is updated to the average of ci,k and
cj,k. This update is Θ(K) for the number of nodes K, and it
is sufficiently fast. cj also uses ci to update cj .

V. EXPERIMENTS

In this section, we first confirm that increasing the commu-
nication frequency T resolves network congestion. Then, we
present the evaluation of the warm-up technique proposed in
Subsection IV-B.

A. Experimental Setup

We use the CIFAR-10 and CIFAR-100 datasets [20] and
VGG16 [21]. Both datasets have 50000 training data points
and 10000 testing data points. The number of nodes is 8 in all
experiments. The accuracy is the average correct answer rate
for the test data for each node. Table I shows the experimental
environment.

B. Preparation

In the following experiments, we simulate communication
but run the training on real GPUs. We use Chainer [22] to
compute the gradients of the loss function. The computation
time is the average of the values measured 10 times to account
for the variation in the computation time.

We made a VGG16 model train using a single node and
saved the model to a file in npz format every epoch. The
npz format is often used to save numpy arrays. We saved each
model for 10 epochs, and the size of all models was 54 MiB.
The wide bandwidth is 10 Gbps, and the narrow bandwidth is
1.0 Gbps. The latency is fixed at 5.0 ms in all nodes.

C. CIFAR-10

The learning rate is fixed at 0.3 in the CIFAR-10 exper-
iments. We first experiment with the batch size. Table II
shows the highest accuracy, and Figure 2 shows the learning

TABLE III
ACCURACY WHEN THE COMMUNICATION FREQUENCY VARIES.

Communication
frequency T

Accuracy

1 87.4%
4 87.5%
8 87.4%

16 86.9%
32 86.2%

TABLE IV
ACCURACY COMPARISON BETWEEN

WARM-UP AND CONVENTIONAL GOSSIP.

Wide Accuracy

Warm-up Conven-
tional

2 nodes 87.0% 87.3%
4 nodes 87.3% 87.0%
6 nodes 86.9% 86.7%

(a) CIFAR-10.

Wide Accuracy

Warm-up Conven-
tional

2 nodes 60.1% 60.3%
4 nodes 60.3% 60.2%
6 nodes 59.7% 59.6%

(b) CIFAR-100.

curves. “Wide” represents the number of wide-bandwidth
nodes. Figure 2a shows that the learning efficiency with batch
sizes of 256 and 512 is approximately the same, and Figure 2b
shows that the learning efficiency with a batch size of 256 is
the best. The accuracy with batch sizes of 256 and 512 is
approximately the same, so the batch size is fixed at 256 in
subsequent experiments.

Next, we vary the communication frequency T to confirm
that a large T resolves network congestion. Figure 3a shows
the communication status of T = 4. Compared to Figure 1a,
the communication time is short on the whole, and network
congestion does not occur. Figure 3b shows the learning
curves. In contrast to Figure 1a, the wider the bandwidth nodes
are, the better the learning efficiency.

We adjust the communication frequency and investigate the
best conditions for learning efficiency. In this paper, we regard
the accuracy as low if it falls by 1% because each experiment
is conducted only once. When the bandwidth of all nodes is
narrow, Figure III shows the highest accuracy, and Figure 4
shows the learning curves. When T = 32, the accuracy
is low. Moreover, the larger T is, the better the learning
efficiency. Therefore, T = 16 is the optimal communication
frequency. We also experiment with increasing numbers of
wide-bandwidth nodes.

We now verify the effect of the warm-up technique. Warm-
up is conducted in the initial 1500 iterations. Table IVa
shows the highest accuracy. The accuracy of the warm-up
and conventional methods is approximately the same. Fig-
ures 5a-7a show the learning curves. We see that the warm-
up technique improves the learning efficiency in all three
experiments. Furthermore, the effect of the warm-up technique
is remarkable when many nodes have wide bandwidths.

D. CIFAR-100

The learning rate is fixed at 0.1 in the CIFAR-100 experi-
ments. We adjust the batch size and communication frequency
and then verify the effect of the warm-up technique. Warm-
up is conducted in the initial 5000 iterations. The results are
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Fig. 2. Learning curves when the batch size varies.
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(a) Communication status when the num-
ber of wide-bandwidth nodes is 6. Nodes
with IDs less than 6 have wide band-
widths.
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Fig. 3. Gossip SGD when the communication frequency T = 4.
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Fig. 4. Learning curves when the communication frequency varies.

similar to those of CIFAR-10. Table IVb shows the highest
accuracy. The accuracy of the warm-up and conventional
methods is approximately the same. Figures 5b-7b show the
learning curves. We see that the warm-up technique improves
the learning efficiency in all three experiments, and the effect
of the warm-up technique is remarkable when many nodes
have wide bandwidths.

VI. CONCLUSION

In this paper, we showed that when the network band-
width is heterogeneous, conventional gossip SGD causes net-
work congestion. Moreover, increasing the number of wide-
bandwidth nodes does not improve the learning efficiency. We
showed that the congestion problem can be solved by adjusting
the communication frequency. Furthermore, we proposed a
warm-up technique to improve the learning efficiency by
adjusting the communication destination selection probability.
Our experiments show that when network congestion is re-
solved by decreasing the communication frequency, increasing
the number of wide-bandwidth nodes improves the learning
efficiency. We verified that the warm-up technique improves
the learning efficiency while maintaining accuracy.

A warm-up technique for cases in which the data dis-
tribution and computation capability are heterogeneous is
left for future work. One solution is to share not only the
communication time but also the computation time.

Tolerance to adversarial nodes is another topic for future
work. Since we do not assume such nodes in this paper,
the learning efficiency can be unsatisfactory. When there are
adversarial nodes, the method of sharing and updating models
may need to be changed.
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