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Abstract—The random walk (RW) is one of the effective
sampling methods for large-scale networks such as the Internet
and social networks. While a simple RW method tends to visit
nodes with high degrees, the Metropolis-Hastings random walk
(MHRW) algorithm has ready-to-use characteristics, wherein
the nodes visited by the algorithm distribute uniformly. How-
ever, because the MHRW algorithm conducts many self-looping
operations and the spread of its crawler is slow, it requires
many samples in order to secure sufficient accuracy. This study
proposes a RW that requires less self-looping than MHRW did
while maintaining the ready-to-use characteristics. The ready-
to-use characteristics are achieved by appropriately changing
the adaption probability of MHRW and choice probability
of neighboring nodes. Our experiments demonstrated that the
proposed RW required less self-loop operations than MHRW
did. Moreover, the cost of the proposed algorithm is discussed
keeping applications to real networks in mind.

Index Terms—graph sampling, Metropolis-Hastings random
walk, cost-conscious

I. INTRODUCTION

Graph sampling is a sampling method for data that form
a graph structure such as social and traffic networks [1]. Its
methodologies can be broadly categorized into two types,
namely, random sampling and crawling-based sampling. Ran-
dom sampling is a method that selects and samples nodes
and edges with independent probabilities from the network,
whereas crawling-based sampling is a method that selects
and samples neighboring nodes and edges. Crawling-based
sampling, in particular, is being actively studied because it can
be applied to situations that are difficult for random sampling
due to restrictions related to security and protection of privacy
[2]–[6].

Graph sampling has a diverse range of purposes including
the optimization of the calculation and visualization of graphs.
For the purpose of accurate estimation of feature values, the
random walk (RW) technique is most commonly used. RW
is one of the Markov chains, in which the state of the next
point is determined solely by the current state. Its probability
of visiting each node characteristically converges toward a
stationary distribution. As the simplest stationary distribution
of RW is proportional to the degree of each node, a sampled
node string concentrates on the nodes with high degrees. On
the other hand, since its stationary distribution is uniform, the
Metropolis-Hastings random walk (MHRW) has ready-to-use
characteristics, whereby the expected value of the result of
a direct analysis of the sampled node string coincides with
the feature value of the population. As is the case with simple

RW methods, the MHRW algorithm selects a neighboring node
and then decides whether to transit to that node or self-loop
to the current node according to the given choice probability.
While the MHRW algorithm has the merit of ready-to-use
characteristics, it also has demerits such as increase in the
number of steps to achieve a certain level of accuracy because
it samples the same node repeatedly due to self-looping,
or unnecessary costs incurred to learn the degrees of the
candidates for transition.

This study proposes a RW method that maintains the ready-
to-use characteristics, which is the merit of MHRW, yet
has less self-loops than MHRW. The study proves that the
proposed method satisfies the ready-to-use characteristics by
appropriately changing the adaption probability of MHRW
and choice probability of neighboring nodes. In addition,
experiments on four networks demonstrated that the number
of self-loops in our methods is less than that of the existing
MHRW algorithm. The proposed method requires information
about two neighboring nodes; therefore, its shortcoming is
the difficulty of its application to real networks. In order
to overcome it, the degree of the node yet to be visited
was approximated using the average degree of the entire
network, which allowed us to achieve the same cost as that
of the MHRW algorithm. The average degree of the network
was estimated from the samples obtained using the MHRW
algorithm, which was run for the first few dozen percent of its
steps. The sample node string was generated in the remaining
steps using this average degree and the proposed method. As
the sample node string generated by the MHRW algorithm
used to obtain the average degree also follows the uniform
distribution, the sample node strings of the MHRW algorithm
and proposed method can be combined to estimate the feature
value of the population.

The rest of this paper is organized as follows. Chapter 2
will discuss the definitions and description of the terminology
used in this study. Chapter 3 will discuss our proposed method.
Chapter 4 will discuss the cost required for applying the
proposed method to real networks. Chapter 5 will discuss
the comparative experiment with MHRW; Chapter 6 will
discuss the related analyses. Finally, Chapter 7 will discuss
the contributions made by this study and future challenges.

II. PREPARATION

This chapter defines the symbols used in this paper and
premise of graphs. In addition, several algorithms of the RW
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are discussed.

A. Notation

The graph structure is a data structure comprising nodes and
edges that connect the nodes. For instance, in a social network
service (SNS), its users are the nodes, and the friendships
between the users are edges. Thus, it can be analyzed as
the graph structure. In this paper, a graph is denoted as
G(V,E), where V = {v1, v2, ..., vn} is the node cluster,
and E = {(vi, vj)|vi, vj ∈ V, i 6= j} is the edge cluster.
Node number |V | and edge number |E| are set as n and
m, respectively. The cluster of nodes neighboring node vi is
defined as N(vi) = {vj ∈ V |(vi, vj) ∈ E}, while the degree
of node vi is denoted as di = |N(vi)|. When the total number
of degrees is set to D =

∑n
i=1 vi, D = 2E is true according

to the handshaking lemma. In addition, the average degree is
denoted as d = D/n. Graph G discussed in this paper is an
undirected graph, i.e., it has links and no weights, and it is
assumed not to have self-loops and multi-edges.

B. Random walk

Graph sampling is a method for elucidating the overall
characteristics of an entire graph using as little data as possible
[1]. It is effective for large-scale graphs that are expensive to
analyze or graphs whose total topology cannot be obtained
due to security or privacy issues, which is often the case with
social networks. Its methodologies can be broadly categorized
into two types, namely, random sampling and crawling-based
sampling. In this chapter, one of the crawling-based sampling
methods, RW, is discussed. RW is a method where samples are
collected using probabilistic transition from the initial node to
one of its neighboring nodes. RW is one of the Markov chains.
The transition probability Pij from node vi to node vj of a
simple RW (SRW), which is the simplest RW whose transition
probability is uniformly random, can be expressed as follows:

Pij =


1

di
vj ∈ N(vi)

0 otherwise

The most unique characteristic of RW is that it possesses
ergodicity when the following three conditions are satisfied:

1) it is possible to reach from a certain state to any other
state;

2) it is not periodic; and
3) the number of states is limited.
When RW possesses ergodicity, stationary distribution π

exists simultaneously, and the probability of visiting each node
converges toward this stationary distribution. For example,
probability distribution π′(t) of visiting each node after t steps
of SRW can be described as π′(t) = (Pr[xt = 1], P r[xt =
2], ..., P r[xt = n]), where Pr denotes the probability of
occurrence of a phenomenon. When i-th element of π′(t) is
set as π′(t)i , it is known that π′(t)i converges toward di/D [7].
D is the total number of degrees, and it is a constant. In
other words, the probability of visiting each node in SRW is
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Fig. 1. Example of sampling using the MHRW algorithm. It generates a
sample list by repeating 1© and 2©.

proportional to the nodes’ degrees, and the selected samples
mainly consist of the nodes with high degrees. In addition, the
mixing time is an indicator of the number of steps required
until the distribution of samples obtained from RW converges
toward a stationary distribution [8]. The mixing time, tmix,
can be expressed as follows:

tmix(ε) := max
vi
{tmix(ε, vi)}

tmix(ε, vi) := min
t
{|π − eiP t

′
|1 ≤ ε, for all t′ ≥ t}

where | · |1 is called the total fluctuation distance and
expressed according to the following equation:

|π − ejP t|1 :=
1

2

n∑
i=1

|πi − (ejP
t)i|

The value of parameter ε in tmix(ε) is often set to 1/4
or 1/8. The mixing time is closely related not only to the
traveling time and total visiting time but also to guarantee of
the accuracy of estimation. Hence, it is an important criterion
when comparing RW techniques [9]–[12].

1) β-random walk (β-RW): β-RW [13] is a type of RW that
was devised to shorten the traveling time and total visiting time
of SRW. Its transition probability can be expressed as follows:

Since visiting the nodes with low degrees becomes easier
as β becomes larger, it is expected that it would thoroughly
visit all nodes of a graph when β is appropriately set unlike the
RW technique, which tends to visit nodes with higher degrees.
While the expected values of both the traveling time and total
visiting time of SRW are O(n3), it has been proven that the
traveling time and the total visiting time of β-RW can achieve
O(n2) and O(n2 log n), respectively, when β = 1/2.

2) Metropolis-Hastings random walk (MHRW): MHRW is
a RW based on the Metropolis-Hastings (MH) algorithm [14],
and it can converge samples toward a chosen distribution. In
most cases, it indicates the type where the samples follow the
uniform distribution. The transition probability of MHRW can
be expressed as follows:

Pij =



1

di
·min(1,

di
dj

) = Qij ·Aij vj ∈ N(vi)

1−
∑

vk∈N(vi)

Pik i = j

0 otherwise
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Algorithm 1 Metropolis-Hastings random walk (MHRW)
Require: n0: initial node, b: cost
Ensure: sample list: sample list
vi ← n0
sample list← {n0}
k ← 1
while k < b do

Choose node vj u.a.r. from N(vi)
Generate p ∼ U(0, 1)
if p ≤ min(1, didj ) then
vi ← vj
append vj to sample list

else
append vi to sample list

end if
k ← k + 1

end while
return sample list

Q and A denote the probability of choosing a neighboring
node and adaption probability to decide whether to transit or to
stay, respectively. They can be expressed as Qij = 1/di, Aij =
min(1, di/dj).

MHRW algorithm decides whether to transit or to self-loop
to the current node using the adaption probability A after
selecting a neighboring node using the transition probability
of SRW. It adds the neighboring node to the sample list when
it transits to that node, and it adds the current node to the
sample list again when it self-loops. While the self-looping is
one of the characteristics of MHRW algorithm, it also causes
degradation of the estimation accuracy due to the increase
of the mixing time through multiple sampling of the same
node and generation of an extra cost when transition is not
made even after obtaining the degree of a transition candidate.
MHRW algorithm is shown in Algorithm 1, and its actual
sampling flow is illustrated in Figure 1.

III. PROPOSED METHOD

In the MHRW algorithm, the mixing time is increased due
to the self-looping, and it requires many samples to achieve a
satisfactory level of accuracy. In this chapter, we propose a RW
that maintains the ready-to-use characteristics of the MHRW
algorithm while requiring less self-loops compared with the
MHRW algorithm.

A. Transition probability
The proposed RW method changes the choice probability of

MHRW from that of SRW. Due to this change, the adaption
probability is set based on Appendix 1 to satisfy the ready-to-
use characteristics. The transition probability of the proposed
method can be expressed as follows:

Pij =


QijAij vj ∈ N(vi)

1−
∑

vk∈N(vi)

Pik i = j

0 otherwise

Algorithm 2 Proposed method
Require: n0: initial node, b: cost
Ensure: sample list: sample list
vi ← n0
sample list← {n0}
k ← 1
while k < b do

Choose node vj Qij from N(vi)
Generate p ∼ U(0, 1)
if p ≤ min(1, Qi

Qj
) then

vi ← vj
append vj to sample list

else
append vi to sample list

end if
k ← k + 1

end while
return sample list

where Q represents the choice probability, and A represents
the adaption probability. Unlike the MHRW algorithm that
self-loops when it selects a node with a high degree as its
transition candidate, the proposed method employs the choice
probability that is more likely to select a node when its degree
is lower. As a result of reducing the number of the self-loops,
the mixing time is reduced and the number of steps required to
ensure a satisfactory accuracy is also reduced. The proposed
algorithm is shown in Algorithm 2. In this paper, the following
two types of choice probabilities are examined.
β-MHRW changes the choice probability of MHRW to that

of β-RW. β is set to 1/2, which generates the shortest traveling
time and total visiting time, and the choice probability and the
adaption probability can be respectively expressed as follows:

Qij =
d
−1/2
j∑

vk∈N(vi)
d
−1/2
k

,

Aij = min(1, Qji/Qij)

By employing the choice probability of β-RW, which is
proportional to the reciprocal of the degree, the number of
self-loops is expected to be reduced.

Reselecting MHRW selects a transition candidate uniformly,
and then reselects another transition candidate. Finally, it se-
lects the candidate with a smaller degree. Its choice probability
and adaption probability can be respectively expressed as
follows:

Qij =
2 ·#{dj < dk}k∈N(i) +#{dj = dk}k∈N(i)

d2i
,

Aij = min(1, Qji/Qij)

B. Stationary distribution

The transition probability of the proposed method in relation
to any of the neighboring nodes is not zero. In addition, as this
study postulates that the subject graph is a linked undirected
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Algorithm 3 Proposed cost reduction method
Require: n0: initial node, b: cost, φ: Ratio of MHRW
Ensure: sample list: sample list
vi ← n0
sample list← {n0}
degree memory ← {n0}: List of nodes whose degrees are
obtained
while length(degree memory) < φb do

Choose node vj u.a.r. from N(vi)
if degree memory doesn’t contain vj then

append vj to degree memory
end if
Generate p ∼ U(0, 1)
if p ≤ min(1, didj ) then
vi ← vj
append vj to sample list

else
append vi to sample list

end if
end while
average degree ← Average degree of the nodes in
sample list
while length(degree memory) < b do

Choose node vj Qij from N(vi) (The degree of the
node that is not in degree memory is calculated as
average degree)
if degree memory doesn’t contain vj then

append vj to degree memory
end if
Generate p ∼ U(0, 1)
if p ≤ min(1,

Qji

Qij
) (The degree of the node that is not in

degree memory is calculated as average degree) then
vi ← vj
append vj to sample list

else
append vi to sample list

end if
end while
return sample list

graph, it is possible to reach any node from a given node. For
the same reason, it is not periodic. Furthermore, based on the
premise of the graph, it is clear that the number of nodes
is limited. From these three conditions, the proposed RW
possesses ergodicity and stationary distribution at the same
time. Based on Appendix 1, this stationary distribution is the
uniform distribution.

IV. COST DISCUSSION

It is important to consider the cost when conducting sam-
pling. Broadly speaking, there are two ways to consider the
cost of MHRW. One is to regard the sample size as the cost,
and another is to regard obtaining the degrees as the cost [15].
In this chapter, the behavior of the proposed method under
each of these cost considerations is discussed.

A. When the sample size is the cost

It is possible to conduct sampling while considering the
sample size as the cost when one would like to set a constant
number of the nodes to be obtained, or when there is a limited
memory for saving the nodes. As the proposed method has
less self-loops than the MHRW does, it is inferred that it can
sample a wider variety of nodes when the sample size is the
same.

B. When obtaining degrees is the cost

It is possible to conduct sampling while considering the
sample size as the cost when one would like to set a constant
number of the nodes to be obtained, or when there is a limited
memory for saving the nodes. As the proposed method has
less self-loops than the MHRW does, it is inferred that it can
sample a wider variety of nodes when the sample size is the
same.

When obtaining degrees is considered to be the cost, the
proposed method requires a far higher cost than the MHRW
algorithm even for a per step basis. One possible method to
reduce the cost of the proposed method up to that of the
MHRW algorithm is to estimate the degrees of the nodes up
to the ones that are next to the neighboring nodes. While it is
possible to know the degree of a node without incurring any
cost if it is already obtained and stored in the memory, it is
not possible to know the degree of other nodes. Therefore, the
proposed method supplements the degree of the node yet to
be obtained with the average degree. By repeating a sufficient
number of steps, the number of the nodes whose degrees
are obtained can be increased and the samples are expected
to converge toward the uniform distribution. However, the
average degree cannot be accurately derived without knowing
the information of the graph overall, and it is unlikely that the
information is given beforehand. Thus, a part of the cost is
used to conduct sampling using the MHRW algorithm, and the
obtained samples are used to estimate the average degree. The
unbiased estimator of function f using RW can be expressed
as follows [16]:

Eπ(f) :=
∑
vi∈V

f(vi)πi (1)

where π is the stationary distribution of RW, and f : V → R
is a function that uses the node as its argument and returns a
real number. As the stationary distribution of MHRW is π =
{1/n, . . . , 1/n}, Equation (1) can be expressed as follows:

Eπ(f) :=
1

n

∑
vi∈V

f(vi) (2)

When f(vi) = di, Equation (2) represents the average
degree. In this way, the average degree can be derived from
MHRW.

Following this, sampling using the proposed method, whose
cost is reduced by estimating the average degree, is conducted.
As the first sample from MHRW satisfies the ready-to-use
characteristics, it can also be used as a sample in its original
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TABLE I
DATA SET OVERVIEW.

Network n m D/n
BA model 10, 000 29, 991 5.998
Facebook 4, 039 88, 234 43.691
DBLP 317, 080 1, 049, 866 6.622
Amazon 334, 863 925, 872 5.530

form, in addition to the estimation of the average degree. The
algorithm of the proposed method is shown in Algorithm 3.

When obtaining degrees is the cost, another merit of reduc-
ing the self-looping emerges. The MHRW obtains the degree
of a neighboring node when deriving the adaption probability.
When it self-loops, it does not make a transition to that node
even though the degree of the transition candidate has been
obtained. In other words, there are many nodes which are not
included in the samples although their degrees are obtained.
The proposed method can reduce such an unnecessary cost by
reducing the number of self-loops.

V. EXPERIMENT

In this chapter, we verify, through experiments using var-
ious networks, whether the proposed method has less self-
loops compared with the MHRW algorithm. Moreover, we
verify whether the ready-to-use characteristics of the proposed
method is maintained after changing the choice probability and
adaption probability of MHRW.

First, we compare the numbers of self-loops of the MHRW
algorithm and the proposed method after crawling for the
same number of steps, and verify whether the sample dis-
tribution converges toward a uniform distribution (Section
V-B). Following this, we conduct the same experiment keeping
applications to real networks in mind after equalizing the cost
of obtaining degrees of the MHRW algorithm and the proposed
method (Section V-C).

A. Data set

Networks generated using the Barabási-Albert (BA) model
[17], which is one of the generative models for complex
networks, and the data sets of real networks published by
the Stanford Network Analysis Project (SNAP)1 are used for
the experiment. Facebook represents the sub-network obtained
from the SNS of the actual Facebook. Its nodes represent
the users and its edges represent the Follow relationships.
DBLP represents the network of the co-authorships of aca-
demic papers supplied by the DBLP computer science bib-
liography. Amazon represents the group purchasing network
obtained by crawling the Amazon website. Its nodes represent
merchandises and its edges represent the group purchasing
relationships indicating whether goods are purchased together
frequently or not. Table I shows the characteristics of each
network.

B. When obtaining degrees is not the cost

First, we compared the numbers of self-loops of the MHRW
algorithm and the proposed method after crawling of the same

1https://snap.stanford.edu/data/

number of steps. Figure 2 shows the results of conducting
a trial where the step that is equivalent to 10% of the total
node number was performed 1000 times for each network
and the average of the self-loop numbers was obtained. These
results shows that the number of self-loops of the proposed
method is less than that of the MHRW algorithm for every
network. Moreover, L1 distance is used to verify whether the
samples of the proposed method are uniformly distributed.
The L1 distance can be expressed as the equation below. The
equation means that the closer the L1 distance is to zero, the
closer the distribution of the observed values is to the expected
distribution.

L1 distance=
n∑
i=1

|πi − π′i|

where π denotes the distribution to be achieved and π′

denotes the actually obtained distribution of the samples.
Figure 3 shows the result of plotting the average of the

L1 distance in relation to the step number obtained for 1000
times for each network. It shows that the proposed method not
only satisfies the ready-to-use characteristics but also obtains
samples generally closer to the uniform distribution compared
with the MHRW algorithm. This is because the L1 distance of
the proposed method is always smaller than that of the MHRW
algorithm for every network. It is inferred that this is due to the
fact that the crawler avoided sampling only the same nodes;
hence, it spread further and collected more diverse nodes in
response to the reduction of the self-loop number.

C. When obtaining degrees is the cost

Next, we conducted an experiment with the proposed
method after reducing its cost and keeping applications to
real networks in mind. Here, it was postulated that obtaining
the degree of a node for the first time incurs the cost. The
obtained degree of the node is stored in the memory. In the
proposed method with a reduced cost, the parameter φ is used
to determine the ratio of the cost to be allocated to the MHRW
that obtains the average degree. In this experiment, the number
of self-loops and the L1 distances for φ = 0.1, 0.3, and 0.5
were compared with those of the MHRW algorithm. When
φ = 1.0, it is MHRW. Figure 4 shows the comparison of the
number of self-loops for φ = 0.1, 0.3, and 0.5 obtained using
the proposed method and the MHRW algorithm. This figure
shows that the lower the proportion of the MHRW is, the lower
the number of self-loops is. Meanwhile, Figure 5 shows the
comparison of the number of specific nodes. It shows that the
proposed method is able to sample a greater number of more
diverse types of nodes even with the same cost compared with
the MHRW algorithm as the proportion of MHRW is lowered.

On the other hand, lowering the proportion of the MHRW
leads to worsening of the average degree estimation accuracy,
which may negatively affect the ready-to-use characteristics
of the proposed method. Figures 6 and 7 show the plot of the
L1 distance for each network, which is the average of 1,000
observations, at 2%, 4%, 6%, 8%, and 10% of the cost of the
total number of the nodes. According to the figures, β-MHRW
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Fig. 2. Number of self-loops of the proposed method and the MHRW algorithm for each network (Step number is 10% of the total number of the nodes).
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Fig. 3. Transition of the L1 distance for each graph (Horizontal axis is the proportion of the number of steps in relation to the total number of the nodes).

has the shorter L1 distance than that of the MHRW for every
φ and every network. In particular, the smaller φ is, which
is the proportion of the MHRW used to obtain the average
degree, the closer the samples of the proposed method are to
the uniform distribution. Moreover, the value of L1 distance
of the Reselect MHRW algorithm can be said to be the same
or lower than that of the MHRW algorithm. These results
suggest that a lower estimation accuracy of the average degree
has a small impact on the ready-to-use characteristics of the
proposed method.

These experiments indicated that the proposed method is the
RW having less number of self-loops than that of the MHRW
while maintaining the ready-to-use characteristics. Moreover,
it demonstrated that even when the obtaining degrees is the
cost, the proposed method can achieve the same cost as the
one required by the MHRW algorithm without losing the
aforementioned merits when using the proposed cost reduction
method.

VI. RELATED WORK

Lee et al. proposed an improvement of the MHRW al-
gorithm, called the MH algorithm with delayed acceptance
(MHDA), through a different approach from that of this study
[18]. While this study reduced the self-loop probability of
the MHRW, the MHDA reduces the probability of transition
to the previous node. When the MHDA accidentally selected
the previous node as the transition candidate, it reselects the
transition candidate in a certain probability. As the self-loop
probability of the MHDA is equal to that of the MHRW
algorithm, it is inferred that combining MHDA with the
method proposed in this study would enable the production
of more expansive and better RWs.

Chierichetti et al. proposed the maximum-degree sampling
(MD) that has the higher number of self-loops compared with
that of the MHRW algorithm [19]. When the obtaining degree
is the cost, the same node is one expense no matter how many
times it is sampled. Thus, if the cost is the same, more samples
are collected when the number of the self-loops is higher. The
transition probability of the MD is expressed as follows:

Pij =



1

dmax
vj ∈ N(vi)

1− di
dmax

i = j

0 otherwise

where dmax = max{d1, d2, ..., dn}. It has been demon-
strated that when obtaining degree is the cost, the L1 distance
of the MD is smaller compared with that of the MHRW
algorithm. On the other hand, the cost for obtaining dmax
under this limited circumstance should be discussed.

VII. CONCLUSION

This study proposed the RW method having less number
of self-loops than that of the existing MHRW while maintain-
ing the ready-to-use characteristics by appropriately changing
the choice probability and the adaption probability of the
MHRW. The proposed method achieved the reduction of the
number of the self-loops by using the choice probability that
makes the nodes with smaller degrees more likely to be
selected as the transition candidates. Moreover, the proposed
method achieved the ready-to-use characteristics by setting the
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adaption probability, whose stationary distribution became the
uniform distribution, using the MH algorithm.

In order to set the choice and adaption probabilities, the
proposed method uses all degrees of the neighboring nodes and
the nodes next to them, whereas the MHRW algorithm uses
one of the neighboring nodes. Thus, the two methods cannot
be said to require the similar cost when applied to the real
networks such as SNS and the Internet. Therefore, we devised
a method to set the choice and adaption probabilities using
the average degree in place of the degrees of the nodes whose
degrees are yet to be obtained. Since the situation where the
average degree is provided as a prior information would hardly
occur, it is estimated first by running the MHRW algorithm
using several dozen percent of the cost, and the proposed
method is performed using the remaining cost. In this way,
the cost of the proposed method was reduced to the similar
level of that of the MHRW algorithm.

We compared the number of the self-loops and the ready-
to-use characteristics of the proposed method and the MHRW
algorithm for four networks in the experiments. The proposed
method demonstrated the better results for both the number
of the self-loops and the L1 distance, which is one of the in-
dicators of the ready-to-use characteristics, in the experiment,
where the collected sample sizes of both methods were the
same. Moreover, we conducted the comparison of the proposed
method with a reduced cost and the MHRW algorithms. In the
proposed method with the reduced cost, the first 10%, 30%,
and 50% of the cost were used to obtain the average degree,
and the respective values of the number of the self-loops and
the L1 distance were observed. The results demonstrated that
even in the experiments with the same costs, the proposed
method has less number of the self-loops, and its sample is
closer to the uniform distribution.

Although we used two types of the probability of choosing
neighboring nodes in this study, other choice probabilities are
possible. We consider that the choice probability that makes
the node with the smaller degree more likely to be selected
results in the smaller number of the self-loops compared with
that of the MHRW algorithms. Therefore, obtaining a better
choice probability is a future objective.
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APPENDIX

Here, we discuss how the adaption probability of the
proposed method was set using the MH algorithm. The MH
algorithm is one of the representative Markov chain Monte
Carlo methods. Its purpose is to compose a sample list under
any probability distribution. In order to achieve this objective,
the Markov chain, which uniquely possesses a stationary
distribution, π, is employed. The stationary distribution and
its uniqueness are guaranteed by satisfying the ergodicity and
the following detailed balance condition.

πiPij = πjPji (3)

When the stationary distribution is striving to be the uniform
distribution, Equation (A-1) becomes Pij = Pji. Now, we re-
solve the transition probability, P , into the choice probability,
Q, and the adaption probability, A, namely, Pij = QijAij .
At this point, the following equation is derived from Equation
(A-1).

Aij
Aji

=
Qji
Qij

(4)

When Aij = min(1, Qji/Qij), it satisfies Equation (A-2).
This is called the Metropolis choice. When Qij = 1/di, the
transition probability of the MHRW is obtained. The ready-
to-use characteristics of the proposed method is satisfied by
setting the choice probability of β-RW as Q and the adaption
probability of the Metropolis choice as A.
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Fig. 4. Number of the self-loops of the proposed method and the MHRW algorithm for each network (Cost is 10% of the total number of the nodes).
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Fig. 5. Number of the specific nodes of the proposed method and the MHRW algorithm for each network (Cost is 10% of the total number of the nodes).
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Fig. 6. Transition of the L1 distance of the MHRW and the β-MHRW algorithms for each graph (Horizontal axis is the proportion of the cost of obtaining
degrees in relation to the total number of the nodes).
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Fig. 7. Transition of the L1 distance of the MHRW and the Reselecting MHRW algorithms for each graph (Horizontal axis is the proportion of the cost of
obtaining degrees in relation to the total number of the nodes).
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