Simulating Ethereum Network with SimBlock

Ryunosuke Nagayama Kazuyuki Shudo Tokyo Institute of Technology

Tokyo Tech

Simblock

You can change network and node behavior

Node

PoX Block selection Attacks

Routing Table

Neighbor selection Mining pool Relay network Latency Bandwidth

Network

Node distribution

SimBlock provides various data about blockchain network

Simblock for Ethereum

GHOST

selects at each fork in the chain the <u>heaviest</u> subtree rooted at the fork \rightarrow Better tolerant of selfish mining

Proof of Stake

Plasma

. . .

Results

If the ratio of attacker blocks is greater than the attacker's mining power in the network, the attack is successful.

Average length of the hidden chain when attacker released

This is related to safe number of confirmations.

YOU FOUND A STAR

Speaker Track

Try it !

Web site, visualizer page, and source code

are available

SimBlock

Q

This work was supported by SECOM Science and Technology Foundation.