CryBlock 2019 April 29th 2019

SimBlock: A Blockchain Network Simulator

Yusuke Aoki, Kai Otsuki, Takeshi Kaneko, Ryohei Banno, Kazuyuki Shudo Tokyo Institute of Technology

青木 優介, 大月 魁, 金子 孟司, 坂野 遼平, 首藤 一幸 SimBlock

東京工業大学

Seoul A

to all the nodes.

Flooding

A public blockchain is supported by a

Peer-to-peer network

Summary:

SimBlock

- A public blockchain "network" simulator
 - developed by Distributed Systems group, Tokyo Tech, and
 - will be released in May 2019.
- It simulates transmission of blocks and TXs between nodes over Internet, and PoW mining time in an event-driven style. It will provides a visualizer.
- It simulates Bitcoin, Litecoin and Dogecoin.
- Researches:

Neighbor selection

Measurement of relay networks

An event-driven simulator

- Events
 - Block generation

- It has a (virtually) single event queue.
- The queue sorts events by time.
- It dequeues an event from the queue and processes it repeatedly.
- Message reception: INV, GETDATA, BLOCK
- Timings
 - Block generation time:
 - A random time along the distribution based on node's hash power and generation difficulty.
 - Message reception time:
 - message_size / bandwidth + latency

Simulation parameters

- SimBlock adopted parameters in [Gervais 2016].
 - "On the Security and Performance of Proof of Work Blockchains", CCS 2016

Parameter	Bitcoin	Litecoin	Dogecoin
# of nodes	6,000	800	600
Block generation interval	10 min	2 min 30 sec	1 min
Block size	545 KiB	6.11 KiB	8 KiB
# of connections per node	Measured distribution based on [Miller 2015]		
Geographical distribution of nodes	Measured distribution		
Network bandwidth	Measured numbers provided by Verison and testmy.net		
Propagation latency			

 Nodes are placed in 6 regions: North America, Sourth America, Europe, Australia, Asia Pacific, and Japan

Simulator validation

 Comparison with measured numbers and an existing simulator
 _{Looks} good.

Median block propagation time T_{MBP}

	Bitcoin	Litecoin	Dogecoin
Measured T_{MBP}	8.7 s	1.02 s	$0.85 \mathrm{s}$
[Gervais 2016]	9.42 s	0.86 s	$0.83 \mathrm{s}$
SimBlock	9.52 s	0.78 s	0.75 s

Stale block rate = Orphan (forked) block rate $r_{\rm f}$

	Bitcoin	Litecoin	Dogecoin
Measured $r_{ m f}$	0.41%	0.273%	0.619%
[Gervais 2016]	0.14%~ 1.85%	0.24%	0.79%
SimBlock	1.42%	0.25%	0.72%

Researches utilizing SimBlock

Under review

Proximity
 neighbor selection
 (Aoki et al.)

- A major technique in P2P field
- We measured its effects quantitatively.

 Measurement of relay networks (Otsuki et al.)

- Relay networks: bloXroute, Falcon, ...
- Oh, my god, they do not improve mining success rate. But ...

Summary

• A public blockchain "network" simulator SimBlock

- Future events
 - Release in May 2019
 - accompanied by a visualizer

Web site

- Demo in IEEE ICBC 2019 in May 2019 in Seoul
- Future development
 - Support for newer protocols: Compact Block Relay, DAG, PoS, ...
 - Update of blockchain and network parameters
 cf. Till Neudecker, "Security and Anonymity Aspects of the Network Layer of Permissionless Blockchains", Ph.D. thesis, Nov 2018