IEEE SocialCom 2018
December 2018

Comparing Graph Sampling Methods Based on the Number of Queries

Kenta Iwasaki, Kazuyuki Shudo

Tokyo Institute of Technology

岩﨑 謙汰, 首藤 一幸 東京工業大学

Graph sampling Crawling Random walk

- They enable estimation of nodal and topological properties of online social networks (OSNs)
 - Effective because the entire network is not available.
 - Properties: Degree distribution, clustering coefficient, ...
 - Note: **Crawling** (e.g. random walk) is possible but uniform sampling is not.

- Query can be the bottleneck of the sampling performance due to
 - API limits
 - Communication latency is much larger than computation.

Contribution:

Query number standard

- Problem
 - Sample size has been the standard to evaluate graph sampling techniques.

Contribution

Standards in studies			
Length of sample node list (walk length)	[Rasti 2009] [Riberio 2010]		
Length of Even not clear !! ee 2012]			
sample node list ???	[Hardiman 2013]		
Number of sample nodes	[Gjoka 2011]		

- Query number based comparison
 shows different relative merits for sampling and estimation techniques.
- It reflects graph accessing cost better.

Graph sampling techniques

- Random walk-based techniques are effective for property estimation for OSNs
 - They enable unbiased sampling with Markov chain analysis.
- Our targets
 - SRW-rw: Simple random walk w/ re-weighting

Postprocess to remove bias due to degree

- NBRW-rw: Non-backtracking random walk w/ re-weighting
- MHRW: Metropolis-Hastings random walk

SRW:

Simple random walk

NBRW:

Non-backtracking random walk

MHRW:

Metropolis-Hastings random walk

Sample size vs. query number

Very different

Sample size (length of sample node list) by 10,000 queries

- Rationale: MHRW can stay the same node and the length of sample node list grows without a query.
- Note that not only the sample size determines estimation efficiency.
 E.g. NBRW reaches various nodes and it is better with Counting Triangles [Iwasaki 2018].

Query issuing timings

1. For random walk

When getting neighbor (friend) list of the next hop ©

2. For property estimation

- Depends on each estimation technique
- E.g. When getting neighbor (friend) list of multiple neighbor nodes ☺ of a node to calculate clustering coefficient of the node naively.

It is necessary to know how the neighbor nodes connected each other to calculate cluster coefficient.

Experiments

with sample size and query number standards

- Clustering coefficient estimated
- Estimation efficiency (precision / cost) compared on
 - Estimation techniques:
 Naïve method vs. Counting Triangles [Hardiman 2013]
 Counting Triangle does not require additional queries for property estimation.
 - 2. Sampling (random walk) techniques: **SRW** vs. **NBRW** vs. **MHRW**

Graph	# of nodes	Average degree	Average Clust. Coeff.
Amazon	334,863	5.530	0.3967
DBLP	317,080	6.622	0.6324
Gowalla	196,591	9.668	0.2367

in Stanford Large Network Dataset Collection

Naïve method vs. Counting Triangles

[Hardiman 2013]

- Sampling with simple random walk (SRW)
- Relative merits are reversed.
 - The similar results shown with the other networks.

SRW vs. NBRW vs. MHRW

- Estimating with Counting Triangles
- Margins are much narrowed.

Note: Our contribution includes Counting Triangles with MHRW.

SRW vs. NBRW vs. MHRW

- Estimating with Counting Triangles
- Relative merits are reversed for DBLP graph.

Summary

- Query number standard Cf. sample size standard
 - for comparing graph sampling techniques
 - for comparing property estimation techniques
 - It reflects graph accessing cost better.
 - Accessing online social networks
 - Accessing a graph on storage and memory
- The two standards showed different relative merits for techniques.

