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Graph sampling g
D Crawling O Random

. They enable estimation of nodal and topologlcal
properties of online social networks (OSNs)

— Effective because the entire network is not available.
— Properties: Degree distribution, clustering coefficient, ...
— Note: Crawling (e.g. random walk) is possible but uniform sampling is not.

A query with
Node ID
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Sample node list €
[1,2,4,2,7,...] Neighbor (friend) list

Crawling on OSN
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¢ Query can be the bottleneck of the sampling performance due to

— API limits
— Communication latency is much larger than computation.



Contribution:

Qllel‘y number standard .

o Problem
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— Sample size has been the standard
to evaluate graph sampling techniques.

Fig. 4 in [Lee 2012]

# of samples
e Contribution

Standards in studies
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— Query number based comparison
shows different relative merits for sampling and estimation techniques.

— It reflects graph accessing cost better.



Graph sampling techmqués . .-

. Random walk-based techniques are effectwe

for property estimation for OSNs

— They enable unbiased sampling with Markov chain analysis.
e QOur targets Postprocess to remove
. .4 | Dbias due to degree
v

— SRW-rw : Simple random walk w/ re-weighting
— NBRW-rw : Non-backtracking random walk w/ re-weighting

— MHRW : Metropolis-Hastings random walk
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Sample size vs. query numqu
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o Very dlfferent

Sample SiZ€ (length of sample node list) by 10,000 queries
Simple
Non-backtracking
Metropolis-Hastings

Graphs are in
Stanford Large Network
Dataset Collection

e Rationale: MHRW can stay the same node and the length of sample
node list grows without a query.

* Note that not only the sample size determines estimation efficiency.
E.g. NBRW reaches various nodes and it is better with Counting Triangles [Iwasaki 2018].



Query issuing timings
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1. For random walk
— When getting neighbor (friend) list of the next hop ©

2. For property estimation

— Depends on each estimation technique

— E.g. When getting neighbor (friend) list of multiple
neighbor nodes @ of a node to calculate clustering
coefficient of the node naively.
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It is necessary to know how the neighbor nodes
connected each other to calculate cluster coefficient.



Experlments G o
w1th sample size and query number standardf‘s”“ ¢ K
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° Clustermg Coeff1C1ent estimated
e Estimation efficiency (precision / costy compared on

1. Estimation techniques:
Naive method vs. Counting Triangles [Hardiman 2013]

Counting Triangle does not require additional queries for property estimation.

2. Sampling (random walk) techniques:
SRW vs. NBRW vs. MHRW

Graph # of nodes Average degree Average Clust. Coeff.
Amazon 334,863 5.530 0.3967

DBLP 317,080 6.622 0.6324
Gowalla 196,591 9.668 0.2367

in Stanford Large Network Dataset Collection
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* Sampling w1th 51mple random walk (SRW)
e Relative merits are reversed.

— The similar results shown with the other networks.

$ Reversed

Better
.

Sample size Query number



SRW VS. NBRW VS. MHR" |
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. Estlmatmg w1th Counting Trlangles
* Margins are much narrowed.

Narrow

Better
.

Sample size Query number

* Note: Our contribution includes Counting Triangles with MHRW.
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o Estlmatmg W1th Counting Trlangles

* Relative merits are reversed for DBLP graph.

Better
.

Reversed

Sample size Query number
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® Query number standard Cf. sample size standard
— for comparing graph sampling techniques

— for comparing property estimation techniques

— It reflects graph accessing cost better.
* Accessing online social networks
* Accessing a graph on storage and memory

e The two standards showed
different relative merits l fx'\ I
for techniques. ‘

Tokyo Tech



