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Abstract—Random walk-based graph sampling methods can
effectively estimate feature values in large-scale social networks
wherein the node IDs are unknown. Real social networks are
sampled by repeatedly querying their APIs to acquire the lists of
adjacent nodes. These queries can then become a bottleneck in
the sampling process because nearly all social network services
restrict the rate at which queries can be issued. However,
most existing graph sampling studies have not focused on the
number of queries but have instead compared methods based
on sample size. Therefore, such graph sampling methods cannot
be recommended for estimating feature values in actual social
networks. This study presents an approach to assess graph
sampling methods that focus on the number of queries. This
describes the time taken by algorithms for typical random
walk-based graph sampling methods, such as a simple random
walk with re-weighting (SRW-rw), a non-backtracking random
walk with re-weighting (NBRW-rw), and a Metropolis ‒ Hastings
random walk (MHRW), which require queries. The graph
sampling precision was then experimentally evaluated based on
sample size and query number standards using actual social
networks, and the types of changes that occur were observed.

Index Terms—graph sampling, social graph, random walk

I. INTRODUCTION

The sampling of large-scale networks is a fundamental
and important issue in analyzing social networks, such as
online social networks (OSNs) and the World Wide Web.
Several studies have used sampling for estimating network
feature values when working with huge networks, wherein the
entire network cannot be considered or when general network
information, such as node IDs, cannot be obtained [1] [2] [3].
When sampling is used to extract sub-graphs, (i.e., graphs that
model parts of the network structure as sets of nodes and
edges), it is called graph sampling [4].

Since general network information, such as node IDs, is
not typically published; therefore, estimating social networks’
feature values can be difficult. For example, uniform
independent sampling, which randomly samples node IDs,
cannot be used because the node IDs are unknown. Graph
sampling methods that track adjacency relations, known as
crawling methods, are therefore more practical [5]. Among
these crawling methods, random walk-based methods are
particularly effective because their algorithms are simple and
easy to implement. In addition, they allow us to conduct
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unbiased graph sampling using Markov chain analysis.
Random walks are not the only possible approach: scanning
methods, such as breadth-first sampling (BFS) [6], have also
been proposed; however, since their sampling deviations are
unknown, they are unsuitable for estimating feature values.

When applying a crawling method to an actual social
network, the sampling process involves repeatedly either
querying, e.g., the OSN’s API, or scraping. Herein, each
query acquires a list of nodes adjacent to the current
Internet-connected node. In the example shown in Figure 1,
the researcher is using a query to acquire a list of adjacent
nodes. As another example, a previous study [2] showed
how Facebook could be sampled by repeatedly acquiring the
friend lists of Facebook users. In the sampling process, the
acquisition of the adjacent node list with a query can become
a bottleneck because with many social networks, the number
of queries that can be used within a fixed unit of time is
restricted. In addition, even if this were not restricted, given the
fact that access via communications is slower than the speed
of accessing computer memory or a disk, the acquisition of the
adjacent node list via the query may still become a bottleneck.

Therefore, the performance of the graph sampling method
should be compared based on the number of queries. However,
comparisons of the estimation accuracy using the graph
sampling method are based on existing studies [7], [8], which
often involve experiments based on sample sizes (the length
of a sample sequence); thus, recommending an appropriate
method for sampling actual social networks can be difficult.

This study proposes a comparison of sampling methods that
focuses on the number of queries. This comparison describes
the timing within the algorithm for typical random-walk-based
graph sampling methods, such as a simple random walk
with re-weighting (SRW-rw) [5], [9], a Metropolis ‒ Hastings
random walk (MHRW) [5], [9], [10], and a non-backtracking
random walk with re-weighting (NBRW-rw) [7], which require
queries. The feature values are estimated based on the number
of queries for actual social networks, and the performance of
the graph sampling methods was compared.

This paper is organized as follows. Section II describes
the background for this study and explains the notation and
definition of terms. Section III describes the graph sampling
method using the random walk method. Section IV explains
the computational experiment conducted herein. Section V
discusses the related research, and Section VI summarizes the
study.
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Fig. 1: Example of acquiring an adjacent node list via the API.

II. PREPARATION

In this section, after explaining the method of notation
and the definitions of the graphs, the graph feature values
used in this study are described. In addition, existing
graph sampling methods and existing methods of estimating
clustering coefficients are described.

A. Notation

Herein, social networks are expressed as an undirected
graph G(V,E). V = {v1, v2, ..., vn} is a set of nodes (term
points), and the number of nodes for the graph as a whole is
expressed as n = |V |. E is the edge set. The adjacent node
set to node v ∈ V is N(v) = {w ∈ V : (v, w) ∈ E}. The
degree of node v is set to d(v) = |N(v)|.

B. Graph feature values

The typical feature values that characterize complex
networks are described herein. Complex networks are defined
as real-world networks with a huge, complex structure. Nearly
all social networks can be defined as complex networks. The
degree distribution and clustering coefficient estimation error
are used herein.

1) Degree distribution: If the node ratio for degree k for
all nodes is expressed as p(k), the degree distribution can be
defined. In social networks, the degree distribution follows the
power law. In other words, it becomes p(k) ∝ k−γ . This is
called a scale-free property, which shows that although nearly
all nodes have a small degree, some nodes have a large degree.
These nodes with a large degree are frequently called hubs .

2) Clustering coefficient: The clustering coefficient is an
important feature value in the network and is often used in
network analyses [2]. In a complex network, a triangle is called
a cluster . The term cluster normally refers to a herd or a
group and is used in several ways in research analyses, such
as cluster analysis or cluster synchronicity. In this study, it is
only used to mean triangle. Many clusters are found within
most real networks, and this is not limited to networks of
human relations . To define a network clustering coefficient,
the clustering coefficient c(v) from the number of triangles,
including a node v, is first defined. A method of selecting
two nodes from v neighboring nodes of which there are
d(v) is as shown in d(v)(d(v) − 1)/2. Based on this, where
there are edges between the two selected nodes, there is one
triangle including these two nodes and the node v. Therefore,
a maximum of d(v)(d(v) − 1)/2 triangles include v Here,
if the number of triangles including v is △i, the clustering
coefficient c(v) can be defined as follows.

c(v) =


0 d(v) = 0ord(v) = 1

2△i

d(v)(d(v)− 1)
otherwise

(1)

From the definition of the clustering coefficient, c(v) ∈
[0, 1]

The clustering coefficient C for the entire network is defined
as the mean value of the clustering coefficients for each node.

C =
1

n

∑
v∈V

c(v) (2)

where c(v) is a value for the node and C is the value for
the graph G.

This is C ∈ [0, 1] in relation to any network, and this is C =
1 in relation to a complete graph. In nearly all actual networks,
C is large; this is a characteristic of complex networks . In this
study, we estimate C for each random walk using the naive
and counting triangles method.

III. RANDOM WALK-BASED GRAPH SAMPLING

This section explains the algorithm and impartiality of the
graph sampling method using the random walk method. First,
the impartial graph sampling as a base is explained, followed
by the algorithm and the method of estimation using each
method. In this study, three typical methods of SRW-rw,
NBRW-rw, and MHRW are used.

A. Impartial sampling

When estimating the feature values focusing on the social
network node or topology, it is necessary to perform impartial
sampling using crawling. Thus, uniform node samples are
obtained via a random walk. In this section, our goal is to
impartially estimate the ratio of nodes with specific features.

In other words, impartial sampling involves constructing
a method of sampling using a random walk to obtain the
expectation values related to a uniform distribution of an
arbitrary function f : V → R. That is, it is used as a method
of sampling, when expressing the uniform distribution as
u

def
= [u(1), u(2), . . . , u(n)] = [1/n, 1/n, . . . , 1/n], in which

Eu(f)
def
=

∑
v∈V

f(v)
1

n
(3)

produces the expected estimated value. By selecting the
function appropriately, it is possible to specify the feature
values for the desired node. For example, when estimating
the degree distribution (P{DG = d}, d = 1, 2, . . . , n− 1) of a
graph G, f(v) = 1l{d(v)=d} for v ∈ V . We select the function
f so that if d(v) = d, f(v) = 1; otherwise, f(v) = 0.

Next, we discuss Markov chain theory, which is the
numerical foundation for impartial sampling using a random
walk on graph G. A typical random walk on graph G or
an irreducible finite Markov chain {Xt ∈ V, t = 0, 1...}
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with reversibility is defined as having the following transition
probability matrix P

def
= {P (v, w)}v,w∈V

P (v, w) = P{Xt+1 = w | Xt = v}, v, w ∈ V, (4)

For ∀v ∈ V ,
∑

w∈V P (v, w) = 1. The transition probability
P (v, w) ≥ 0 is allocated to each edge (v, w) ∈ E, and it
is possible for the random walk to transition from node v
to node w. In addition, even when there is no self-loop in
graph G, the transition to the self-node can be set. For v ∈ V ,
P (v, v) > 0 may exist. However, transitions between nodes
without edges are not possible. In other words, P (v, w) =
0,∀(v, w) /∈ E (v ̸= w).

The stationary distribution is π = [π(v), v ∈ V ]. The
following estimator is defined for an arbitrary function f :
V → R.

µ̂t(f)
def
=

1

t

t∑
s=1

f(Xs) (5)

Function f expectation values for the stationary distribution
π are given as follows.

Eπ(f)
def
=

∑
i∈V

π(i)f(i). (6)

From Ref. [11], where {Xt} is a stationary distribution π
finite, irreducible Markov chain,

µ̂t(f)→ Eπ(f) almost surely (a.s.) (7)

is formed for an arbitrary initial distribution P{X0 = v}, v ∈
V, ( t→∞). However, Eπ(|f |) <∞.

B. SRW-rw

SRW-rw is a sampling algorithm that includes a method
of calculating the estimated value from the sample node
collection, whereas simple random walk (SRW) expresses
a simple random walk transition algorithm. This method is
used based on a sample sequence obtained from SRW and
an appropriate re-weighting process for achieving impartial
sampling. This is essentially a special case for weighted
sampling applied to the random samples generated by the
Markov chain. The basic idea of this method is that the
deviation in the sampling that occurs because of SRW
stationary distribution is corrected via re-weighting.

Here, we explain the method of acquiring graph G of the
SRW sample sequence. The Markov chain expressing the
sample sequence for the nodes visited by SRW is {Xt}. If this
transition probability matrix is PSRW = PSRW (v, w)v,w∈V ,
then PSRW (v, w) can be expressed as

PSRW (v, w) =

{ 1
d(v) (v, w) ∈ E

0 otherwise
(8)

The transition probability PSRW is irreducible, and the
stationary distribution πSRW (v) = d(v)/(2|E|), v ∈ V is
known to be reversible.

Let us suppose that t samples {Xs}ts=1 are obtained from
SRW. Then, for the arbitrary function f : V → R, the
weighted function w : V → R is determined as follows:

µ̂t(wf) =
1

t

t∑
s=1

w(Xs)f(Xs)→ Eπ(wf) = Eu(f) a.s. (9)

Because this is an irreducible finite Markov chain, when t→
∞,

µ̂t(wf) =
1

t

t∑
s=1

w(Xs)f(Xs)→ Eπ(wf) = Eu(f) a.s. (10)

is a strongly consistent estimator. However, this is not practical
because |E| is not usually known in advance; therefore, the
following type of estimator is often used. When t→∞,

µ̂t(wf)

µ̂t(w)
=

∑t
s=1 w(Xs)f(Xs)∑t

s=1 w(Xs)
→ Eu(f) a.s. (11)

Then, by setting w(v) = 1/d(v), an unbiased estimation
can be conducted. In this study, µ̂t(wf)/µ̂t(w), w(v) =
1/d(v)(v ∈ V ) is treated as an unbiased estimator in SRW-rw.

As an example, we estimate the degree distribution using
SRW-rw. To estimate the degree distribution P{DG = d} for
the target graph G, we select f(v) = 1l{d(v)=d} for v ∈ V .
Then, for an arbitrary degree distribution d,

µ̂t(wf)

µ̂t(w)
=

∑t
s=1 1l{d(Xs)=d}/d(Xs)∑t

s=1 1/d(Xs)
→

∑
v∈V

1l{d(v)=d}
1

n
a.s.,

This demonstrates that the estimator µ̂t(wf)/µ̂t(w) is a valid
impartial estimation of the degree distribution P{DG = d}.

Queries are required within the SRW-rw algorithm when
determining the transition destination nodes from the adjacent
node list and when using degree information as weighting.
Because the degree information is known from the visited
node, the number of queries is equal to the number of unique
nodes among those visited.

C. Non-backtracking Random Walk with Re-weighting

In this section, we discuss NBRW-rw [7]. NBRW-rw is
based on a sample sequence obtained from nonbacktracking
random walk (NBRW) and a suitable reweighting process to
achieve impartial sampling. This demonstrates that for the
reweighting process in the second part, the same process can
be applied as in SRW-rw. In addition, we can see that the
estimator using NBRW-rw produces a lower distribution value
than the estimator using SRW-rw [7]. This section describes
the NBRW transition method and provides an overview of the
weighting process.

The NBRW transition method uses a random walk to
uniformly and randomly select from adjacent nodes while
avoiding a transition to the previous node. As an exception,
this does not apply when there is an initial node and a
degree-one node.

Now, we will explain the NBRW-rw re-weighting process.
Let us denote the t step node visited with NBRW as X ′

t ∈ V .
Determining the next node X ′

t from X ′
t+1 depends on X ′

t and
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on X ′
t−1 because of the algorithm, which avoids the previous

node. Therefore, {X ′
t}t≥0 is not a Markov chain in the V

node state space. However, we can see that this formed via
the following formula from Ref. [7].

1

t

t∑
s=1

f(X ′
s)→ Eπ(f)a.s. (12)

Because π is a stationary distribution of SRW, an impartial
estimation can be conducted using the same weighting process
as used in SRW [7] Queries are required within the NBRW-rw
algorithm when determining the transition destination from the
adjacent node list and when using the degree information as
weighting. Similar to SRW-rw, because the degree information
is known from the visited node, the number of queries is equal
to the number of unique nodes among the visited.

D. Metropolis-Hastings Random Walk

Whereas with SRW or NBRW, samples tend to be biased
toward high degree nodes, MHRW can appropriately transform
the transition probability so that the stationary distribution is
a uniform distribution. Because the Metropolis ‒ Hastings
(MH) algorithm [12] performs sampling from a complex
probability distribution µ, this is a typical Markov chain
Monte Carlo (MCMC) method. We can see that if we need to
perform sampling from a uniform distribution µv = 1

n , as on
this occasion, we can achieve this by defining the transition
probability in the following way.

PMH(v, w) =


min( 1

d(v) ,
1

d(w) ) (v, w) ∈ E

1−
∑

y ̸=v P
MH(v, y) w = v

0 otherwise

(13)

Then, the stationary distribution is πMH(v) = 1
n , which

is a uniform distribution. Contrary to SRW, MHRW may
sometimes transition to its own node. In this case, we add
a new sample sequence. We can express this MH algorithm
as in Algorithm 1. Then, Xt ∈ V is the t-th node of MHRW,
and X0 is selected arbitrarily.

Algorithm 1 MH algorithm in MHRW (at time t).

randomly select node w from the adjacent node list N(Xt)
generate p ∼ U(0, 1)

if p ≤ d(Xt)
d(w) then

Xt+1 ← v
else
Xt+1 ← Xt

end if

It is notable that Algorithm 1 does not require obtaining
its own transition probability PMH(v, v) and does not require
knowing the degree of the nodes in the t step node Xt adjacent
node list. Instead, if only the degree information for node w is
selected at random, it is possible to select whether to transition
to w.

Impartial estimations using MHRW, unlike SRW-rw, do
not require reweighting calculations because the MHRW

stationary distribution is a uniform distribution. If we assume
that t samples {Xt}ts=1 are obtained from MHRW because
there is an irreducible finite Markov chain for an arbitrary
function f : V → R, when t→∞,

1

t

t∑
s=1

f(Xt)→ Eu(f) a.s., (14)

Note that, as expressed in Algorithm1, in the case of
self-transition, it is necessary to add one sample.

Queries are required within the MHRW algorithm when
stopping at node v, when acquiring the node v adjacent list,
and when used to obtain the degree information from the
node v transition destination nodes. Therefore, the number
of queries is basically the number of unique visited nodes;
however, where a self-loop occurs, additional queries are
required.

E. Graph sampling focusing on the number of queries

To estimate the feature values, graph sampling uses two
types of timings at which the adjacent node list can be acquired
as follows.

• When determining the next transition node using the
crawling algorithm

• When calculating function f(v) to estimate feature
values, (from formula 5)

Crawling algorithm requires an adjacent node list acquisition
query to determine the next transition destination node. In
other words, for nodes that have been already visited, a query
is always used once to acquire the adjacent node list of that
node. With SRW and NBRW, the number of specific visited
nodes is equal to the number of queries in the crawling
algorithm. In the case of MHRW, when a self-loop occurs,
there is a possibility that the query will be wasted; therefore,
the number of specific visited nodes ≤ number of queries in
the crawling algorithm. The adjacent node list of the nodes
that are visited once can be reused when revisiting and when
estimating feature values.

The number of queries when calculating function f(v) to
estimate feature values differs according to the feature values
that are to be estimated. This can be broadly divided into cases
wherein feature value estimation is possible by reusing the
adjacent node list obtained via the query used when running
the crawling algorithm, as well as feature values for which
further queries are required. The former is a case wherein f(v)
can be calculated using the information from the list adjacent
to node v. For example, clustering coefficient estimation uses
average degree, degree distribution, and the counting triangles
method. The latter equates to naive clustering coefficient
estimation.

Figure 2 is an example of the node range using queries
for calculation when performing naive clustering coefficient
estimation, i.e., f(v) = c(v). The blue nodes for the query
range used within the crawling algorithm should acquire
adjacent nodes with queries up to the yellow range to calculate
the clustering coefficients. In this way, the necessary query
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Fig. 2: Example of query range for obtaining adjacent node list.

range differs according to the feature value that has to be
obtained via graph sampling. Incidentally, the range between
the focal adjacent node, as well as the adjacent nodes of that
adjacent node, is called the ego network.

In contrast, when estimating the same feature value, if the
method of setting f(v) changes, the necessary query range
may change. To use the example of clustering coefficients,
using the counting triangles method, this is f(v) = ϕk · w(v)
[8]. During this time, when ϕk is the k-th step, if an edge
exists between the node in the k+1 step and the k ‒ 1 node,
the value of ϕk will be 1; and if the edge does not exist, the
value will be 0. The definition of w(v) changes based on the
random walk; however, this is a function that determines the
degree information. Therefore, the clustering coefficients can
be estimated using only the queries required in the crawling
algorithm.

IV. EXPERIMENTS

The SRW-rw, NBRW-rw, and MHRW performance with the
query number standard and sample size standard are described
herein.

A. Data set

We performed an experiment using the social
network/citation network publicized with the Stanford
Network Analysis Project (SNAP) [13]. Table I shows an
overview of each data set. Cases wherein graph sampling can
practically occur are those in which the target social network
is unknown; however, we performed a simulation in relation
to graph data where the overall image is known.

TABLE I: Network statistical volume.

Network Number of nodes Average degrees Average
clustering coefficient

Amazon 334,863 5.530 0.3967
DBLP 317,080 6.622 0.6324

Gowalla 196,591 9.668 0.2367

B. Number of Queries by Random Walk

Figure 3 shows the mean number of queries and the sample
size when simulating 100 random walks each for SRW,
NBRW, and MHRW. Figure 6a shows the average number

(a) Mean number of queries
required for a 10,000-sample
size.

(b) Mean sample size per 10,000
queries.

Fig. 3: Relation between number of queries and sample size by
random walk for each network.

of queries required for the sample size (length of sample node
sequence) to reach 10,000 times when sampling SRW, NBRW,
and MHRW. Figure 6b shows the mean sample size to acquire
10,000 queries for each random walk. Based on the ascending
width size value, these queries are NBRW, SRW, and MHRW.

C. Clustering coefficient estimation

In this section, the two types of clustering coefficient
estimation experiments performed in Figures 4 and 5 are
described. In both the experiments, we plotted the normalized
root-mean-square error (NRMSE) [14] with the horizontal axis
as the sample size (left side) and number of queries (right
side). The lower the NRMSE value, the greater the estimation

accuracy. NMRSE can be calculated 1
C

√
E[(Ĉ − C)2], when

Ĉ is the clustering coefficient estimated value.
In Figure 4, we fix the sampling method as SRW-rw. Then,

we compare NRMSE as an approximate method using the
naive estimation and counting triangles method. With Amazon,
DBLP, we selected 100 as the starting point and performed the
simulations independently. With Gowalla, we selected 10 as
the starting point and performed the simulation independently.
The naive method is defined as f(v) = c(v), v ∈ V in relation
to function f : V → R in formula 5. Here, c(v) is the
function defined in formula 1. In other words, we calculate the
clustering coefficients as defined for each node visited in the
random walk and perform impartial estimation using SRW-rw.
To calculate a clustering coefficient for a certain node the
adjacent node lists for that node and for those adjacent nodes
should be acquired; consequently, queries other than random
walk transitions occur.

In contrast, the counting triangles method is a method to
estimate clusters without additional queries in relation to the
queries required for random walk transitions. The details are
described in Appendix A. In Figure 5, we fix the clustering
coefficient estimation method as the counting triangles method
and compare the NEMSE when changing the transition method
via random walk. For each network, we selected 100 as the
starting point and performed the simulation independently.
We combined the SRW-rw, NBRW-rw, MHRW, and counting
triangles method; in addition, since a combination of the
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Fig. 4: NMRSE for clustering coefficient estimation using naive
method and Counting Triangles method.

MHRW and counting triangles method has not been proposed
in the past, a new algorithm in this study has been devised
herein, which is described in Appendix A.

D. Degree distribution estimation error

Degree distribution was estimated via random walk. We
evaluated the complementary cumulative distribution function
P{Dg > d}(CCDF) for each respective network and compared
SRW-rw, NBRW-rw, and MHRW. To estimate P{Dg > d},
we defined f(v) = 1l{d(v)>d}, v ∈ V and estimated them.
Similar to the method for clustering coefficients, we compared
estimation accuracy by calculating NRMSE. Here, the method
of calculating NRMSE is 1

x

√
E[(x̂(t)− x)2]. x̂(t) is the

estimated value when taking t samples, and x is the true value
when taking t samples. During this time, in case of impartial
estimation, x = limt→∞ x̂(t).

Figure 6 shows a simulation performed independently from
a starting point of 100 for each network and plots the NRMSE
for each method. The sample size standard accuracy is on the
left side, whereas the query number standard accuracy is on
the right side. The smaller the value, the greater the accuracy;
NRMSE is calculated in the same way for MHRW estimation
accuracy. However, since poor results were obtained when
SRW-rw and NBRW-rw were separated, we displayed a graph
comparing only SRW-rw and NBRW-rw.

E. Observations

As described in Section III-E, graph sampling methods
were compared by focusing on the number of queries. From

Fig. 5: NRMSE when estimating the clustering coefficient for
random walk sequence using the Counting Triangles method.

Figure 3 ,we can compare the number of queries required
in the crawling algorithm for each random walk. Figure
4 fixes the crawling algorithm and shows an example of
when the f(v) setting is changed. Figures 4 and 5 show
examples of fixing f(v) and changing the crawling algorithm.
From Figure 4, it is evident that the accuracy is reversed.
With a query number standard, the NRMSE for the counting
triangles method is smaller than that for the naive method;
therefore, accuracy is determined to be good, whereas with
a sample size standard, the naive method exhibits better
accuracy because the counting triangles method calculates
f(v) in a probabilistic way. However, with the naive method,
the clustering coefficient calculation is performed as defined
because this method requires additional queries for calculating
f(v); thus, the counting triangles method produced better
results compared with the query number standard. In this
case, when considering sampling in actual social networks,
the experiment results from the query number standard should
be used.

The graphs on the left side of Figures 5 and 6 show
a comparison of random walks based on the sample size
standard, and for each result, the accuracy improved in the
order of NBRW, SRW, and MHRW. The results of NBRW vs
SRW for the sample size standard are described in [7], [8]. The
sample size standard degree distribution NRMSE in Figure
6 generally has a lower value for NBRW than SRW, thus
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Fig. 6: NRMSE per degree d when estimating P{Dg > d}.

leading to the conclusion that NBRW is more accurate than
SRW. However, when looking at the query standard results,
the NBRW and SRW results appear to have an antagonistic
relation. As can be seen from Figure 3, the sample size per
query is larger for SRW compared with that NBRW. In other
words, when considering the query number standard, the SRW
accuracy is reduced in relation to NBRW compared to the case
of the sample size standard; notably, the SRW accuracy may
even be reversed. In the same way in Figure 5, the accuracy
of NBRW and SRW in the query number standard is smaller
than in the case of sample size standard. Furthermore, the
difference between the accuracy of MHRW and SRW is the
same. With the sample size standard in Figure 5, SRW clearly
exhibits a higher accuracy than MHRW; however, from the
results of the query number standard, the difference in their
accuracy is reduced and actually reversed with the experiment
on DBLP.

V. RELATED WORK

Herein, we describe related studies for graph sampling.
Several studies have achieved impartial sampling from
the network. Gjoka et al. [2] compared SRW-rw that
achieves impartial sampling by reweighting using the standard
distribution via SRW and MHRW using the MHRW algorithm,
thereby demonstrating that SRW-rw shows superior accuracy.
Lee et al. [7] proposed NBRW-rw derived from SRW-rw and
showed that from a logical and experimental perspective, that it

is superior to NBRW-rw impartiality and SRW-rw. In addition,
several studies provide sampling techniques with the objective
of estimating graph feature values. For methods specializing in
the estimation of clustering coefficients, Hardiman and Katzir
[15] [16] were the first to propose the counting triangles
method as a method of approximation, as well as proposed
a method combined with SRW-rw. Iwasaki et al. [8] proposed
a graph sampling coefficient estimation method in combination
with NBRW-rw and demonstrated that it was superior to
SRW-rw. Combination of MHRW and the counting triangles
method have not been previously proposed; thus, this is a novel
study that proposes the combination of MHRW and counting
triangles method with an overview of the algorithm shown in
Appendix A. Chiericetti et al. [17] described query complexity
in uniform sampling. Therein, rejection and maximum-degree
sampling was used for MHRW and graph preinformation,
which is different from the target method used in this study.

VI. CONCLUSION

For graph sampling in actual social networks, performance
comparisons with the query number standard are important.
However, experiments using query number standards were
not performed previously because the methods recommended
in those studies may not be valid methods in actual social
networks. In addition, when proposing a new graph sampling
method in the future, it will be necessary to incorporate the
results of the performance comparison with query number
standards.

In this study, after demonstrating the focus points when
considering graph sampling based on the query number
standard, we demonstrated the difference between accuracy
using the traditional sampling size standard and the query
number standard using an experiment. We also demonstrated
an example of performing a query number standard experiment
in relation to the new method of estimating clustering
coefficients using a combination of MHRW and the counting
triangles method. For the previous graph sampling methods,
such as SRW-rw, NBRW-rw, and MHRW, with the sample
size standard, the accuracy was higher in NBRW-rw, SRW-rw,
and MHRW; however, by changing the query standard order,
the difference between each method became smaller. It was
demonstrated that this may be reversed depending on the target
group and estimated feature values. Furthermore, we showed
an example in which, even when the feature value estimation
function f(v) is changed by method, the results are reversed
based on the sample size standard and query number standard.

Future issues include the logical expression of the
relationship between the number of queries and sample size.
The relationship between the sample size number and feature
value estimation accuracy has been evidenced by past studies;
so, it is expected that these results can be used to obtain
the relation between the number of queries and feature value
estimation accuracy.
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APPENDIX

In this appendix, we describe the basic thinking underlying
the counting triangles method as an approximation algorithm
for clustering coefficient estimation using experiments in this
study. In addition, we propose a counting triangles method
through MHRW, which has not been proposed until now.
The counting triangles method is a technical method to
estimate clustering coefficients by investigating the triangular
structures that emerge during the random walk. Until now,
we have proposed a method by which the counting triangles
method can be applied to SRW and NBRW [8], [15]. A
salient aspect of the counting triangles method is that it
does not require additional queries, as the queries required
for random walk transitions do. As a method of calculating
the clustering coefficients as defined, additional queries were
required to calculate clustering coefficients [2]. Therefore, it

is an important point whether additional queries are required
or not.

The basic thinking behind the counting triangles method
is to uniformly and randomly select two nodes v1, v2 from
v adjacent nodes in relation to degree 2 or more nodes v
visited during the random walk. If an edge exists between
v1, v2, this is counted as a triangular structure. Here, the
probability expectation value that a triangular structure exists
is defined with a weighted coefficient, so that the clustering
coefficients of node v are equal. In case of SRW, the weighted
coefficient is d(v)/(d(v) − 1), and in case of NBRW, the
weighted coefficient is 1. Nodes wherein the degree is 1 or
below have a clustering coefficient of 0; therefore, there is no
need to confirm the triangular structures. When implementing
this, v1 ∈ N(v2) or v2 ∈ N(v1) can be confirmed. Thus, it is
necessary to obtain the v1 or v2 adjacent node list. With the
counting triangles method using SRW and NBRW, by defining
v1 = {node visited one step before v} and v2 = {node visited
1 step after v}, two nodes can be uniformly and randomly
selected from the adjacent node list; this satisfies the state of
knowing the adjacent node list of one of the nodes without
requiring any additional queries.

Next, the counting triangles method with MHRW is
described. Owing to the fact that the MHRW transition
destination node is the node selected uniform and randomly
from the adjacent node list, this cannot be defined as v1 =
{node visited one step before v}and v2 = { node visited 1
step after v}, as in SRW or NBRW. Therefore, it is necessary
to devise a way of selecting v1, v2. In this study, in relation
to node v of degree 2 or greater visited in MHRW, we
define v1 as { transition destination candidate node w within
MHRW transition Algorithm 1 } and v2 as the { node selected
in uniform random from list N(v)/{v1} after v1 has been
removed from the v adjacent node list }. At this time, the
probability expectation value v2 ∈ N(v1) is equal to the
clustering coefficient of node v. Furthermore, with MHRW,
because it is necessary to know the degree of the transition
destination candidate nodes to obtain the receive rate to the
transition destination candidate nodes within the transition
algorithm, the v1 adjacent node list is obtained within the
transition algorithm. Therefore, an additional query is not
required when applying the counting triangles method.
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