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Abstract—Betweenness centrality is a widely used network
measure in social network analysis. There are many algorithms
for calculating or approximating this measure, but most of
these algorithms assume that all network information is known.
Therefore, since we can obtain little information for online social
networks because of security and privacy concerns, we must
consider a crawling-based algorithm.

Herein, we propose a new crawling-based algorithm for esti-
mating the top-k nodes with the highest betweenness centrality
in online social networks. The proposed algorithm approximates
the ego betweenness centrality of the nodes sampled via a
random walk and approximates the top-k nodes with the highest
betweenness centrality in a graph as the top-k nodes with the
highest approximated ego betweenness centrality in the sampled
nodes. This algorithm makes the same number of requests to an
application programming interface as existing algorithms because
we reuse sampled nodes for approximation. Our experimental
results show that the proposed algorithm can estimate the top-
k nodes of real social networks more accurately than existing
methods when sample size is very small.

Index Terms—social network, betweenness centrality, ego be-
tweenness centrality, random walk

I. INTRODUCTION

Online social networks (OSNs) have recently gained con-
siderable attention. For example, Twitter had over 300 million
monthly active users in 2018 [1]. There are many studies that
have analyzed a particular OSN as a graph with nodes of users
and edges of relationships among users. In [2]–[4], the authors
investigate structural measures of OSNs such as the clustering
coefficient, average shortest path length, and graphlets.

Identifying influential users in an OSN is important in
marketing [5], [6]. Centrality indicates the importance of nodes
in a graph. In particular, the betweenness centrality proposed
by Freeman [7] has been actively used in network analysis
[8]–[10]. The betweenness centrality of a node is defined as
the sum of the ratio of the shortest paths between any two
nodes in a graph that pass through that node. Users with high
betweenness centrality in OSNs are instrumental for the spread
of information because these nodes are present on many of the
shortest paths in a graph.

Our goal is to estimate the top-k nodes with the highest
betweenness centrality in OSNs. If we have all the information
about a network, we can estimate the top-k betweenness
centrality nodes using an exact algorithm [11] or approxima-
tion algorithms [12]–[17]. However, these methods cannot be

Fig. 1. Overview of crawling-based algorithms that estimate top-k nodes.

applied to OSNs because privacy and security concerns prevent
one from obtaining complete network information. In practical
scenarios, we can obtain the information about a target user
by making a request to the application programming interface
(API). In most OSNs, we can sample the information using
a crawling algorithm that traverses a list of neighboring users
provided by the API. However, this gives considerably less
than total information because the number of requests per unit
time is limited for most OSNs.

Therefore, we need crawling-based algorithms that consider
the limitation of requests. As shown in Fig. 1, crawling-based
algorithms consist of two methods: (1) the sampling method
in which the nodes or edges are sampled from a graph by
crawling and (2) the estimation method in which the top-k
nodes with the highest betweenness centrality in the graph
are estimated from the sampled information. Two indices are
used for the evaluation of each method: the collection ratio
and the overlap ratio [18]. The former is the ratio of the top-k
nodes that are sampled, whereas the latter is the ratio of the
top-k nodes that are accurately estimated. A sampling method
needs to be chosen whose collection ratio is overall high in
most graphs because the nodes that are not sampled cannot be
estimated. In addition, we need an estimation method whose
overlap ratio is high.

In this paper, we propose a new crawling-based algorithm to
estimate the top-k betweenness centrality nodes in OSNs. The
proposed method approximates the ego betweenness centrality
[16] of the nodes sampled via a random walk and then
approximates the top-k betweenness centrality nodes in a
graph as the nodes with the highest approximated top-k ego
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betweenness centrality in the sampled nodes. Our experimental
results show that the overlap ratio of the proposed method is
higher for real social networks when sample size is very small
than that of existing methods in [18] and [19].

II. RELATED WORK

A number of studies have focused on estimating the top-k
betweenness centrality nodes. In this section, we describe the
cases in which all the network information can be obtained
and discuss cases in which only a limited amount of network
information can be obtained.

A. Cases Wherein All Network Information Can Be Obtained

Currently, the fastest known algorithm for exactly calcu-
lating the betweenness centrality of all the nodes is Bran-
des’ algorithm [11]. This algorithm solves the single-source
shortest path problem (SSSP) from every node (v) and then
traverses backward on these paths to efficiently compute the
contribution of the shortest paths from v to the betweenness
centrality of other nodes. The algorithm requires at least
O(nm) time for the unweighted graphs and O(nm+n2 log n)
time for the weighted graphs, where n is the number of nodes
and m is the number of edges. Therefore, for considerably
large graphs, Brandes’ algorithm is not practical for perform-
ing exact calculations. For this reason, many approximation
algorithms have been proposed [12]–[17].

There are two approximation approaches that are used to
estimate the top-k betweenness centrality nodes. The first
approach is to approximate the betweenness centrality of
all nodes via a random sampling [12]–[14]. Brandes and
Pich solved the SSSP using a small set of nodes randomly
sampled from nodes in a graph [12]. Yoshida randomly
sampled node pairs and computed their shortest paths by
using the breadth-first search algorithm [13]. Riondato and
Kornaropoulos approximated the betweenness centrality of all
nodes by randomly sampling the shortest paths between any
two nodes [14].

The second approach is to approximate the top-k between-
ness centrality nodes as the top-k nodes of another centrality
[15]–[17]. The other centrality needs to be calculated easily for
each node from little information, and many of the top-k nodes
of another centrality should be top-k betweenness centrality
nodes. Pfeffer and Carley used the k-betweenness centrality
(proposed by Borgatti and Everett [20]), which selected node
pairs with the shortest path length of k or less from a graph
[15]. Everett and Borgatti used the ego betweenness centrality
of each node, which selects the node pairs from their neighbors
and is equivalent to 2-betweenness centrality [16]. Kourtellis
et al. proposed the k-path centrality [17] and used it for
approximation. The k-path centrality considers random paths
in a graph whose length is k or less but which need not
necessarily be the shortest paths. In addition, Kourtellis et al.
proposed an algorithm that approximates the k-path centrality
of all nodes via a random sampling.

In this study, we used ego betweenness centrality; however,
our method is different from that proposed in previous research

[16] in terms of the assumption that considerably limited
information is available from OSNs. Everett and Borgatti
assumed that all the network information was available when
they calculated the ego betweenness centrality of all the nodes.
Therefore, it is impractical to apply this method to OSNs
because we can obtain the little information. For the same
reason, other exact or approximation algorithms [11]–[15],
[17] can not be applied.

B. Cases Wherein Limited Network Information Can Be Ob-
tained

There are two crawling-based algorithms which can be
applied to OSNs [18], [19]. Each crawling-based algorithm is
composed of two methods: (1) the sampling method in which
the nodes or edges are sampled from a graph by crawling
and (2) the estimation method in which the top-k nodes are
estimated from the sampled information. Lim et al. introduced
the following indicators for evaluating each method [18].

• Collection ratio: The ratio of the number of top-k nodes
that are sampled to k.

• Overlap ratio: The ratio of the number of top-k nodes
that are accurately estimated to k.

The collection ratio depends on the sampling method, whereas
the overlap ratio depends on the estimation method.

First, we describe sampling methods. Ideally, we should
choose the sampling method whose collection ratio is overall
high for many networks with small sample size. There are a
number of crawling-based sampling methods, such as breadth-
first search sampling and random walk sampling. Previous
studies [18], [19] have compared the collection ratios of
various crawling-based sampling methods, and the collection
ratio of random walk sampling was found to be overall high
in most graphs. In addition, when we use a random walk
sampling, we have the advantage of being able to perform
a theoretical analysis because the stationary distribution of a
random walk can be calculated.

Next, we describe estimation methods. Maiya and Berger-
Wolf induced a subgraph, G′, from a set of sampled nodes,
V ′, in the graph G = (V,E) and approximated the top-k
betweenness centrality nodes in G as the top-k betweenness
centrality nodes in G′ [19]. A subgraph induced by V ′ in G is
defined as G′ = (V ′, E′), where E′ = {(vi, vj) ∈ E : vi, vj ∈
V ′}.

Lim et al. approximated the top-k nodes with the highest
betweenness centrality nodes in G as the top-k nodes with the
highest degree centrality among the nodes sampled via a ran-
dom walk [18]. Nodes with high degree centrality frequently
have high betweenness centrality [21], [22]. In addition, the
degree centrality of each sampled node can be calculated
exactly because all neighboring nodes of the sampled nodes
are obtained via a random walk.

Our method approximates the top-k betweenness centrality
in a graph as the top-k nodes with the highest approximated
ego betweenness centrality in the nodes sampled via a random
walk. In Section V, we show that the overlap ratio of our
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proposed method is higher than that of existing methods [18],
[19] on real social networks.

III. PRELIMINARIES

In this section, we describe the notation, several centrality
definitions, and random walk.

A. Notations and Definitions

OSNs can be modeled as an undirected and unweighted
graph, G = (V,E), with a set of nodes, V = {v1, v2, ..., vn},
and a set of edges E. We assume that |V | = n and that the
graph G is a simple and connected graph. Let N(i) = {vj ∈
V : (vi, vj) ∈ E} denote the set of neighbors of the nodes
vi ∈ V and di = |N(i)| denote the degree of node vi.

The betweenness centrality of vi is defined as the sum of
the ratio of the shortest path between all pairs of nodes in the
graph that pass through vi [7]. Let σj,k denote the number
of shortest paths between vj and vk. For vi ∈ V , let σj,k(i)
denote the number of shortest paths between vj and vk that
pass through vi. For any vi ∈ V and vj ∈ N(i), we define
σj,j(i)
σj,j

= 0.

Definition 1. The betweenness centrality of vi is defined as

BC(i) =
∑

vj ,vk∈V \{vi}

σj,k(i)

σj,k
.

The k-betweenness centrality is defined as the sum of the
ratio of the shortest paths between node pairs having the
shortest path length as k or less [20]. Let disti,j denote the
shortest path length between vi and vj .

Definition 2. The k-betweenness centrality of vi is defined as

BCk(i) =
∑

vi1
,vi2

∈V \{vi},disti1,i2
≤k

σi1,i2(i)

σi1,i2

.

An ego network is a network comprised of a certain node
and its neighbors. The ego betweenness centrality of vi is the
betweenness centrality of vi in the ego network of vi [16].

Definition 3. The ego betweenness centrality of vi is defined
as

eBC(i) =
∑

vj ,vk∈N(i)

σj,k(i)

σj,k
.

We define Nj(i) = N(i)\(N(j)∪{vj}). For a simple graph,
the following proposition is obtained from this definition:

Proposition 1.

eBC(i) =
∑

vj∈N(i)

∑
vk∈Nj(i)

1

|N(j) ∩N(k)|
.

Proof. When vk ∈ Nj(i), the number of shortest paths
between vj and vk that pass through vi equals 1 because there
are no multiple edges and (vj , vk) /∈ E. In addition, there is
a shortest path between vj and vk for each common neighbor
of vj and vk. Therefore, σj,k = |N(j) ∩ N(k)| holds. When
vk /∈ Nj(i), the number of shortest paths between vj and vk

that pass through vi equals 0 because (vj , vk) ∈ E. Therefore,
for each vj ∈ N(i),

σj,k(i)

σj,k
=

{
1

|N(j)∩N(k)| (vk ∈ Nj(i))

0 (otherwise)
.

We also obtain following proposition.

Proposition 2. For any nodes vi, the following inequality is
satisfied:

0 ≤ eBC(i) ≤ di(di − 1).

Proof. For nodes vi ∈ V and vj , vk ∈ N(i), 0 ≤ σj,k(i)
σj,k

≤
1 holds. From Definition 3, the lower bound is obtained if
and only if σj,k(i)

σj,k
= 0 for all vj , vk ∈ N(i). For any vj ∈

N(i), we defined σj,j(i)
σj,j

= 0. Therefore, the upper bound is

obtained if and only if σj,k(i)
σj,k

= 1 for all vj ∈ N(i) and
vk ∈ N(i)\{vj}.

The degree centrality of vi is defined as

DC(i) = di.

B. Random Walk

In a random walk, a walker uniformly selects a neighbor in
a random fashion and traverses the node. This process repeats
until the target number of the sampled nodes is reached. We
sample the information, such as IDs in OSNs, of nodes which
traversed by random walk. Here let R = (x1, x2, ..., xr) be a
sequence of indices of nodes sampled via a random walk with
r steps. The transition probability of node vi to node vj in a
random walk is defined as

pi,j =

{
1
di

(vj ∈ N(i))

0 (otherwise)
.

Let Pr[A] denote the probability that event A occurred. We
denote the distribution induced by R as follows:

πR = (Pr[xr = 1], P r[xr = 2], ..., P r[xr = n]).

After many steps, the probability Pr[xr = i] converges to
a certain value π(i). The vector π = (π(1), π(2), ..., π(n))
is called the stationary distribution of G. In particular, the
stationary distribution of a random walk is given as follows
[23]:

π(i) =
di
2|E|

.

Herein, we assume that the initial node vx1
is drawn from

the stationary distribution of G, as described in [23]. In OSNs,
it is impossible to do this in practice. Therefore, we randomly
select the initial node from V and repeat the random walk
process with some steps until it converges to the stationary
distribution, after which we start sampling. The number of the
steps depends on the mixing time of G and many OSNs are
known to have low mixing time [24].
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Fig. 2. Example of a random walk.

IV. PROPOSED METHOD

Our estimation method approximates the top-k nodes with
the highest betweenness centrality in a graph as the top-
k nodes with the highest approximated ego betweenness
centrality in the nodes sampled via a random walk. Many
OSNs have the low average shortest path length, which are
called small world networks [25]. For example, in Twitter,
it is suggested that the average shortest path length is 4.12,
which is a considerably small value [26]. For such small world
networks, many nodes with high k-betweenness centrality [20]
also have high betweenness centrality, where the value of
k is considerably small (e.g., 2, 3, and 4) [15], [27]. This
is because high betweenness centrality nodes mediate many
node pairs whose shortest path length is small. We use the
ego betweenness centrality that is equal to 2-betweenness
centrality, because we need to make additional requests in
comparison with those required for the existing methods [18],
[19] when k was larger than 2. However, even though k is
2, as shown in our experiment, ego betweenness centrality is
good approximation for betweenness centrality in real social
networks.

A. Approximating Ego Betweenness Centrality

Here, we describe how to approximate the ego between-
ness centrality of nodes sampled via a random walk. Let
R = (x1, x2, ..., xr) be a sequence of indices of the nodes
sampled via a random walk with r steps. We assume that the
initial node vx1 is drawn from the stationary distribution of G.
We define the set I(i) for each sampled node vi as follows:

I(i) = {l : xl = i, 2 ≤ l ≤ r − 1}.

When we visit vi at l step (2 ≤ l ≤ r− 1), l is an element of
I(i). For each l ∈ I(i), we define a variable ϕl(i) as follows:

ϕl(i) =

{
1

|N(xl−1)∩N(xl+1)| (vxl+1
∈ Nxl−1

(i))

0 (otherwise)
.

We define a variable Φ(i) as follows:

Φ(i) =
1

|I(i)|
∑
l∈I(i)

ϕl(i)

For each sampled node vi which the condition I(i) ̸= ϕ holds,
let ˜eBC(i) be the approximation for eBC(i).

Definition 4. We define ˜eBC(i) as

˜eBC(i) = di
2Φ(i).

For example, let vi be i in Fig. 2. Additionally, let R =
(x1, x2, ..., x6) = (1, 5, 9, 8, 5, 7) be a sequence of indices of
the nodes sampled by a random walk of six steps. In this
case, I(5) = {2, 5}, I(8) = {4}, and I(9) = {3} holds. For
example, we calculate ˜eBC(5). When l = 2, the conditions
i = x2 = 5, vx1

= 1, vx3
= 9, and vx3

∈ Nx1
(5) hold.

|N(x1) ∩ N(x3)| = |{4, 5}| = 2; therefore, we conclude
that ϕ2(5) = 1

2 . When l = 5, the conditions i = x5 = 5,
vx4 = 8, vx6 = 7, and vx6 /∈ Nx4(5) hold. Thus, we
conclude that ϕ5(5) = 0. Consequently, we can obtain ˜eBC(5)

= d5
2

|I(5)|Φ(5) =
25
2 (ϕ2(5) + ϕ5(5)) =

25
4 . Similarly, we obtain

˜eBC(8) = ˜eBC(9) = 0. In addition, ˜eBC(1), ˜eBC(2), ˜eBC(3),
˜eBC(4), ˜eBC(6), and ˜eBC(7) are not defined.

We can obtain the following lemma:

Lemma 1. For any sampled nodes vi ∈ V , we have that

E[ ˜eBC(i)] = eBC(i).

Proof. For each l ∈ I(i), both vxl−1
and vxl+1

are neighbors
of vi because a random walk traverses the neighboring node.
Therefore, we obtain

E[ ˜eBC(i)] = E[di
2Φ(i)] = E[di

2ϕl(i)]

= di
2

∑
vj ,vk∈N(i)

(Pr[xl−1 = j, xl+1 = k|xl = i] (1)

× E[ϕl(i)|xl−1 = j, xl+1 = k])

= di
2

∑
vj∈N(i)

∑
vk∈Nj(i)

(Pr[xl−1 = j, xl+1 = k|xl = i] (2)

× 1

|N(j) ∩N(k)|
).

Eq. (1) holds because of the law of total expectation. Eq. (2)
holds due to the definition of ϕl(i). The condition Pr[xl−1 =
j, xl+1 = k|xl = i] holds:

Pr[xl−1 = j, xl+1 = k|xl = i]

=
Pr[xl−1 = j, xl = i, xl+1 = k]

Pr[xl = i]
(3)

=
Pr[xl−1 = j] · pj,i · pi,k

Pr[xl = i]
(4)

=

dj

2|E| ·
1
dj

· 1
di

di

2|E|
(5)

=
1

di
2 .
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Fig. 3. An example of calculating ϕl(i).

Eq. (3) holds due to the definition of the conditional probabil-
ity. Eqs. (4) and (5) holds because of the transition probability
and stationary distribution of a random walk. Therefore,

E[ ˜eBC(i)] = di
2

∑
vj∈N(i)

∑
vk∈Nj(i)

1

di
2

1

|N(j) ∩N(k)|

=
∑

vj∈N(i)

∑
vk∈Nj(i)

1

|N(j) ∩N(k)|

= eBC(i).

The approximation error is relatively large for nodes whose
|I(i)| is small. However, small I(i) means that vi is visited
little, and such nodes have often low degree because nodes
with low degree is rarely traversed in a random walk. Their
exact ego betweenness centrality is also small frequently (See
Proposition 2).

B. Number of Requests to API
In OSNs, we can obtain the IDs for given user’s neigh-

bors by making a request to the APIs. In a crawling-based
algorithm, we need to consider the total number of requests
because we are allowed only a limited number of requests per
unit time in most OSNs.

To avoid repetitive requests for the nodes that have already
been traversed once, we store the IDs of the neighboring nodes
for each sampled node. Therefore, the number of requests to
the API of sampling via r steps of a random walk is equal to
the number of sampled nodes n′ (n′ ≤ r): all algorithms need
to make requests at the least n′ times.

As well as existing crawling-based algorithms [18], [19],
our algorithm only makes requests n′ times because there are
no additional requests in approximating ego betweenness cen-
trality of each sampled nodes. In our algorithm, we calculate
ϕl(i) for each l ∈ I(i). We consider the case of Fig. 3. We
can check vxl+1

∈ Nxl−1
(i) and calculate ϕl(i) =

1
3 without

sampling additional common neighbors such as vj . This is
because we know N(xl−1) and N(xl+1) since we sampled
them.

TABLE I
DATASETS.

Network |V | |E|
Epinions [28] 75,877 405,739
soc-buzznet [29] 101,163 2,763,066
Gowalla [28] 196,591 950,327
soc-academia [29] 200,167 1,022,440
Dogster [28] 426,485 8,543,321
soc-flickr [29] 513,969 3,190,452

V. EXPERIMENTAL RESULTS

We used real OSNs to evaluate our method. We focus on
undirected and simple graphs by removing the directions of
edges if the graphs are directed, treating multiple edges as
a single edge, and deleting the loops. Additionally, for an
unconnected graph, we deleted the nodes that are not contained
in the largest connected component of the graph. Table I lists
number of nodes and number of edges.

To compare our method with existing methods [18], [19], we
use the collection ratio and the overlap ratio. Each crawling-
based algorithm consists of a sampling method and an es-
timation method. Both our and existing algorithms use the
same sampling method, namely random walk: these algorithms
have same collection ratio. Therefore, in order to compare
the overlap ratio of each estimation method, we calculate the
overlap ratio of each estimation methods from the same sample
nodes in each simulation. Each simulation is performed as
follows:

1) We sample n′ nodes from an original graph by a random
walk. we select the initial node of a random walk from
the stationary distribution of the graph.

2) We estimate top-k nodes from the same n′ sampled
nodes by each estimation method (namely the proposed
method, Lim et al.’s method, and Maiya et al.’s method).

3) We calculate overlap ratios of each estimation method.
We ran the simulation independently 1000 times and com-

pared the average of overlap ratios of each estimation method.
We discuss the average of each method when n′ is changed
and when k is changed, respectively.

First, we discuss the experimental result when n′ is changed.
Fig. 4 shows the average of the collection ratio and overlap
ratios of the proposed method and those of Lim et al. and
Maiya et al. when we vary n′ from 1000 to 5000 in increments
of 1000 (Indicated by a black dotted line, a black solid line,
a red solid line, a black dashed line, a black dash-dot line).
As mentioned above, each algorithm has the same collection
ratio. Note that the collection ratio is the maximum value of
the overlap ratio, and it is advantageous to have these two
values close to each other.

Firstly, we discuss the collection ratio of a random walk.
In all graphs, we could collect many top-10 nodes with the
highest betweenness centrality in spite of small sample sizes.
We often traverse nodes with high degree in a random walk:
therefore, nodes with high betweenness centrality often have
high degree or are close to nodes with high degree.

Proc. IEEE ISPA-IUCC-BDCloud-SocialCom-SustainCom 2018, 
pp.1128-1135, December 2018



TABLE II
THE AVERAGE OVERLAP RATIO OF TOP-k NODES IN 1000 SIMULATIONS (n′ = 5000).

Network Ours
k=10

Lim et al.
k=10

Maiya et al.
k=10

Ours
k=20

Lim et al.
k=20

Maiya et al.
k=20

Ours
k=50

Lim et al.
k=50

Maiya et al.
k=50

Epinions 0.881 0.800 0.849 0.817 0.750 0.793 0.764 0.740 0.781
soc-buzznet 0.903 0.900 0.800 0.921 0.900 0.784 0.792 0.740 0.719
Gowalla 0.856 0.800 0.801 0.764 0.796 0.727 0.740 0.719 0.716
soc-academia 0.851 0.801 0.810 0.847 0.854 0.853 0.739 0.740 0.656
Dogster 0.915 0.900 0.878 0.851 0.753 0.859 0.881 0.844 0.804
soc-flickr 0.763 0.682 0.697 0.609 0.509 0.594 0.559 0.335 0.565

TABLE III
THE OVERLAP RATIO BETWEEN EXACT TOP 10 BETWEENNESS

CENTRALITY NODES AND EXACT TOP 10 EGO BETWEENNESS CENTRALITY
(DEGREE CENTRALITY) NODES.

Network Ego betweenness Degree
Epinions 1.0 0.8

soc-buzznet 0.9 0.9
Gowalla 0.9 0.8

soc-academia 0.8 0.8
Dogster 1.0 0.9

soc-flickr 0.9 0.7

Then, we compare the overlap ratios of the proposed method
and existing methods. We obtained three results. First, the
overlap ratios of proposed method are higher than those of Lim
et al.’s method in all graphs when n′ = 5000. The overlap ratio
of the proposed method converges to the overlap ratio between
the exact top 10 betweenness centrality nodes and the exact top
10 ego betweenness centrality nodes in each graph. Similarly,
the overlap ratio of Lim et al.’s method converges to the
overlap ratio between the exact top 10 betweenness centrality
nodes and the exact top 10 degree centrality nodes. Table III
shows the exact overlap ratio of each method and the higher
overlap ratio is shown in bold. The proposed method achieved
higher overlap ratios than Lim et al.’s method, because the
exact overlap ratios of ego betweenness centrality are higher
overall than those of degree centrality.

Second, the overlap ratios of the proposed method are
lower than those of Lim et al.’s method in all graphs when
n′ = 1000. This is caused by rank error among the top
nodes with approximated ego betweenness centrality because
of approximation error. In the future, we would like to improve
the approximation error of the proposed method.

Third, the overlap ratios of the proposed method are higher
overall than those of Maiya et al.’s method in all graphs. The
overlap ratio of Maiya et al.’s method depends on the induced
subgraph, and the betweenness centrality is defined globally
in a graph. Therefore, the overlap ratio of their method is
unstable when the number of sampled nodes is small.

Finally, we discuss the experimental result when k is
changed. Table II shows the average of overlap ratios of the
proposed method and those of Lim et al.’s method, and Maiya
et al.’s method when we set k as 10, 20 and 50, respectively.
The highest average overlap ratio among these methods iss
shown in bold. The overlap ratios of the proposed method
are higher than those of other methods in all graphs when

k is equal to 10. Also, the proposed method has overall
higher ratios than those of the other methods when k is
equal to 20 and 50. For some graphs, the overlap ratio of
the proposed method is lower than that of another method;
however, this is caused by the approximation error of ego
betweenness centrality. Future work consists of improving the
approximation error of ego betweenness centrality of sampled
nodes when the number of sampled nodes is small.

VI. CONCLUSION

We proposed a new method to estimate the top-k between-
ness centrality nodes via a random walk in OSNs. We approx-
imated the ego betweenness centrality of the nodes sampled
via a random walk and the top-k betweenness centrality nodes
as the top-k nodes of the approximated ego betweenness
centrality in the sampled nodes. In our approximation method,
we reused the sampled nodes to avoid making additional
requests. For OSNs wherein only limited information about
these networks can be obtained, our experimental results show
that the proposed method can estimate top-k nodes more
accurately than existing methods. In future work, we would
like to improve the approximation error of ego betweenness
centrality of sampled nodes and propose estimation algorithms
for directed graphs.
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(a) Epinions (b) soc-buzznet

(c) Gowalla (d) soc-academia

(e) Dogster (f) soc-flickr
Fig. 4. The average collection ratio and average overlap ratio value of each methods in 1000 simulations (k=10).
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