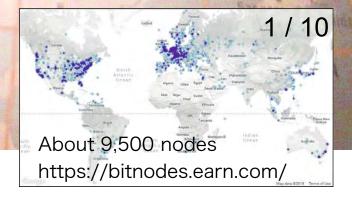
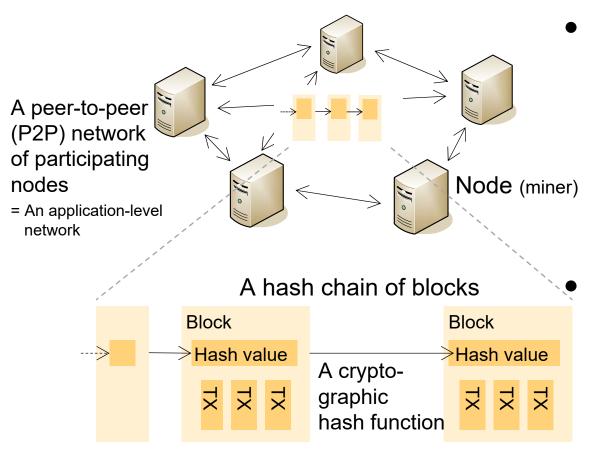
IEEE HotICN 2018 August 2018


Towards Application Portability on Blockchains

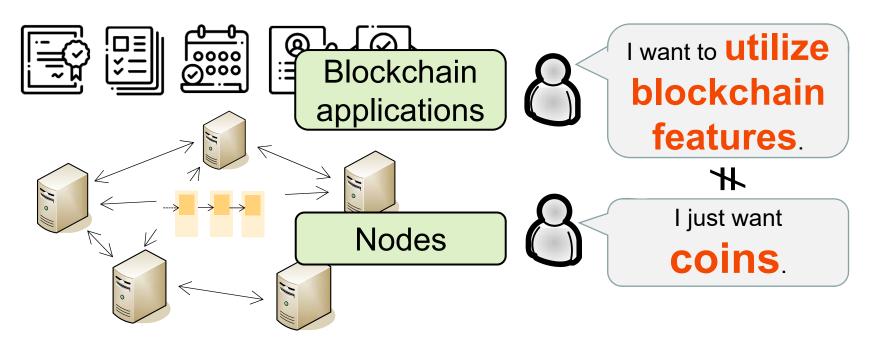

Kazuyuki Shudo, Reiki Kanda, Kenji Saito Tokyo Institute of Technology Keio University

首藤一幸,神田 伶樹,斉藤 賢爾 東京工業大学 慶應義塾大学

Background: (Public) Blockchain

- A distributed system supporting Today's cryptocurrencies
 - Bitcoin's market capitalization is US\$ 110B.
 - 9,500 Bitcoin nodes

A block and transactions in the block are confirmed by Proof of Work / Stakes / Importance / Elapsed Time / ... algorithms.


 A winning node (miner) takes some new coins.

Problem:

"Incentive mismatch"

/インセンティブ(動機)不整合

 Blockchain nodes and applications do not share common incentive.

• If a public blockchain cannot provide sufficient economic incentives ...

Part of icons made by Freepik from www.flaticon.com is licensed by CC 3.0 BY.

Problem:

"Incentive mismatch"

インセンティブ (動機) 不整合

- If a public blockchain cannot provide sufficient economic incentives ...
 - E.g. A fall in coin prices

l just want coins.

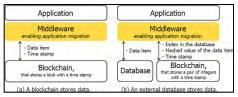
Node (miner) operator

- It loses the ability to confirm transactions securely.
 - Fewer supporting nodes -> Vulnerable to attacks
 - Majority (51%) attack, eclipse attack, ...
- In May 2018, such attacks succeeded in a row.
 - Bitcoin Gold: 388,200 BTG = US\$ 18,600,000 = 20 億 JPY/円
 - Monacoin: 23,832 MONA = US\$ 93,500 = 1,000 万 JPY/円

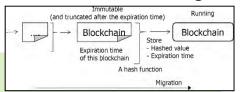
Possible solutions

I want to support applications.

1. Align their incentives ??? Node (miner) operator


- ... Non-trivial and an open problem

2. Make applications **portable**


- A potential (and next-best) solution

Our contributions

- (Pointing out "incentive mismatch" problem)
- A middleware design that enables application migration between blockchains
- Migration process
- Note: Implementation is part of future work.

Middleware design

Migration process

,

Preparation:

Portability levels

(1) Runnable

An application can run on both.

Application A

Application A

Blockchain A

Blockchain B

(2) Migratable Our target

An application can migrate.

Application A → Application A

Blockchain A

Blockchain B

• Runnable

- A common API and smart contract language enable runnable portability.
- Different blockchains running the same middleware also enable it.
- It is unlikely to be useful because it requires application restart and loses fundamental blockchain features:
 - Proof of data existence
 - Verification of state changes
- *Migratable* our target

Preparation:

Data to be migrated

In case of a cryptocurrency:

- (1) Current state of the application \Leftrightarrow Account balance
- (2) Logs · Transactions
 - Metadata of the states that describe state changes and their time stamps.

Fundamental blockchain features:

- · Proof of data existence
- Verification of state changes

does not require logs. requires logs.

Middleware design

- Design principles
 - Minimize dependence on specific blockchain middleware
 - It stores simple data items, such as numbers or byte sequences, together with time stamps.
 - Do not expect to be able to retain trust in the original (source)
 blockchain
 - We cannot continue to rely on it in case of imminent collapse of it.
 - (a) A blockchain stores data.

Application

Middleware

enabling application migration

- Data item

- Time stamp

Minimize

Blockchain,

that stores a blob with a time stamp

(b) An external database stores data.

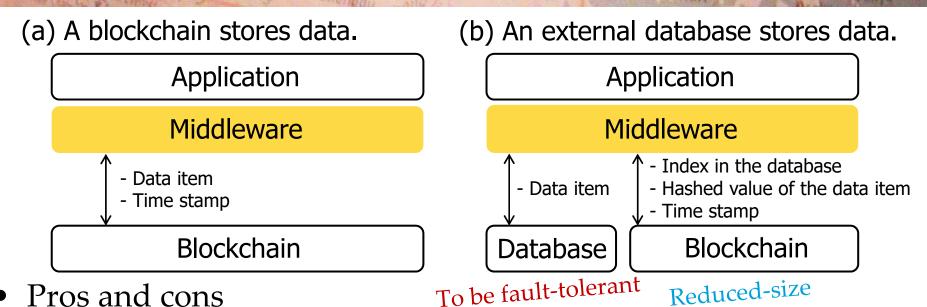
Application

Middleware

enabling application migration

- Data item

Database

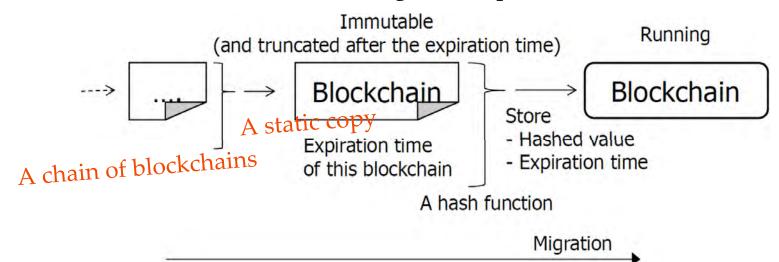

- Index in the database
- Hashed value of the data item
- Time stamp

Minimize

Blockchain,

that stores a pair of integers with a time stamp

Middleware design (cont'd)



- Pros and cons
 - (b) reduces the blockchain size, Instead, the database should be fault-tolerant. Replication or erasure coding work.
- If verification of state (data) changes is
 - required: (a) must keep the original blockchains. In other words, **(b)** must keep all the versions of data. Logs are required.
 - not required: (a) can abandon the original blockchains after copying metadata to prove the data exist. **(b)** can overwrite data.

Seoul

Migration process

In case verification of state (data) changes is required

The middleware

- stores a static copy of the original blockchain, truncating it at the expiration time specified in block height.
 - Not rely on the original blockchain's middleware to still be running and accessible online.
 - Truncating allows us to stop trusting the original blockchain after the expiration time.
- makes a chain of the stored blockchains. It prevents tampering.
- accesses the stored blockchain. It requires a parsing library.

Summary

- "Incentive mismatch" problem pointed out
- Middleware design enabling application migration presented
- Migration process provided
- Future work
 - Proof of the design by implementation
 - Incentive-matched blockchain
 - Interoperability between heterogeneous blockchains

