
Ballistic Skip Graph:
A Skip Graph-Style Constant-Degree

Structured Overlay
Yusuke Aoki, Masaaki Ohnishi, Kazuyuki Shudo

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552 Japan

Email: {aoki.y.au, ohnishi.m.aa}@m.titech.ac.jp, shudo@is.titech.ac.jp

Abstract—Structured overlays enable the construction of
application-level networks from multiple nodes, and the decen-
tralized searching of data in the network. One such structured
overlay is the skip graph, which supports range queries. Each
node in a skip graph has multi-level shortcut links. The degree
of each node is O(log N) on a network with N nodes. The paper,
proposes Ballistic Skip Graph, a structured overlay that reduces
the degree of each node to O(1) by limiting the number of
shortcut links to a randomly selected single level while supporting
range queries. Because the nodes are not grouped, the proposed
method requires no extensive reconfiguration of the network
when nodes join or leave. An evaluation experiment confirmed
that the average routing table size is confined to a small constant.

I. INTRODUCTION

Overlay networks are virtual networks constructed on low
layer networks. When an overlay network is based on mathe-
matical rules, it is known as a structured overlay network. A
structured overlay assigns identifiers (IDs) to the nodes and
data. Each node builds a routing table comprising sets of the
ID and internet protocol addresses of neighboring nodes. The
nodes communicate in a multihop manner; i.e., each node
forwards a message to appropriate nodes selected from its
routing table under the mathematical rules. Structured overlays
maintain a low number of messages even when the number
of nodes increases, because they limit the number of nodes
receiving the message.

A distributed hash table (DHT) [1] is a key–value storage
constructed on a structured overlay. A DHT stores data as
key–value pairs and searches the data item associated with a
given key. The hash value of the key of each data item is also
the ID of that data item, and each node is responsible for the
data in its ID range. Therefore, a datum is stored in the node
responsible for its data ID. The key of the data on a node
sequence is not maintained in a DHT, because the data are
stored in the order of their IDs. For this reason, the DHT does
not support range queries.

A skip graph [2] is a structured overlay that supports range
queries. Each node in a skip graph has O(logN) shortcut
links, where N is the number of nodes. Like many DHT
algorithms, the path length in a skip graph is O(logN) when
using a proper shortcut link. However, unlike many DHT

algorithms, a skip graph stores the data in key order rather
than the hash values of the keys.

If the node degree (i.e., the routing table size) could be
reduced to O(1), we can reduce the maintenance cost of the
routing table. Several attempts have been made in this direc-
tion [3]–[5]. A failed communication should be maintained
for sufficient time to judge whether the failure is merely a
communication trouble or whether the destination node is
broken or disconnected from the network. For this purpose,
each node in many cases periodically sends heartbeat messages
to the nodes in the routing table, which do not affect the usual
routing. Reducing the table size of each node to O(1) would
markedly reduce the cost of this process and would simplify
the resource management of physical nodes in applications
that create several virtual nodes within one physical node.

The degree of each node in a skip graph is O(logN).
Some studies have proposed structured overlays that reduce
the routing table size to O(1) by extending skip graphs [4],
[5]. However, these structured overlays either require the
maintenance of node groups or are intolerant to faults. These
problems are especially severe in environments where nodes
frequently join and leave. As leaving and joining changes the
proper groups of nodes, a node group in this environment
requires frequent reconfiguring, which incurs a large cost.
Furthermore, even when group reconfiguration is not required,
the total number of nodes must be regularly estimated which
is also expensive.

The present paper, proposes Ballistic Skip Graph, a struc-
tured overlay that reduces the routing table size of O(1)
without grouping the nodes. The paper also retains the ad-
vantage of skip graphs . However, as nodes in the original
skip graph have multiple levels of shortcut links, Ballistic
Skip Graph randomly decides the level of the shortcut links
to one to each node, thereby reducing the routing table size to
O(1). Because the level of each node is determined randomly
without depending on other nodes, Ballistic Skip Graph does
not require the total number of nodes or maintenance of a
node group. Consequently, the influence of node joining and
leaving is locally suppressed.

Section II of this paper describes skip graphs and other
relevant background research. Section III and Section IV
proposes and evaluations our structured overlay, respectively.

Proc. 23rd IEEE Symposium on Computers and Communications 
(IEEE ISCC 2018), June 2018



11… 00… 11…01… 00…10…11…

2 5 151312108

2
5 1310

2

8 12 15

8 15
5 13

10
12

17

17

17

01…

Level  1

Level  2

Level  0

Membership  vector

Fig. 1. Example of skip graph

The summary and future challenges are given in Section V.

II. RELATED WORK

A skip graph is a structured overlay based on a skip list
[6], a data structure that extends the linked list. The network
structure of a skip graph is shown in Fig. 1.

Each node in a skip graph is assigned a key and a random-
bit string known as a membership vector (MV). The key and
MV determine the multilevel lists on which the node is placed.
For each level i, the set of nodes with i common prefix bits
of the MV forms a level list, defined as a bidirectional list of
nodes in the key order. Each node has two routing tables: one
containing information of the successor nodes and the other
containing information of the predecessor nodes. The entries
in the routing table size terminate at the level at which no
nodes have common MV prefixes, so the routing table is sized
O(logN).

Routing in a skip graph is performed by repeatedly transfer-
ring messages, preferentially though high-level shortcut links.
Each node transfers its message to the node closest to the
target key that does not pass the target node. As the number
of nodes existing between a transferring node and the target
node in one transfer is expected to below half the number, the
path length is O(logN). In addition, a skip graph guarantees
the reachability of the message by the bidirectional list, in
which all nodes participate in the key order.

Although DHT indexes the hash keys, a skip graph supports
range queries as mentioned above. Range queries are made
through normal routing and flooding. First, normal routing
finds a single node in the range, requiring O(logN) steps
and O(logN) messages. The query is then broadcast to the
m nodes in the range by flooding, which requires O(logm)
steps and O(m logN) messages. The entire operation takes
O(logN) steps.

Constant-degree structured overlays based on the skip graph
have also been proposed. For example, a family tree [4] is a
constant-degree overlay, that supports range queries by com-
bining skip graph and the hierarchical structure of a constant
order structured overlay known as Viceroy [7]. Like Viceroy, a
family tree estimates the total number of nodes and randomly
decides the level of the node from 0 to logN , maintaining
the degree of nodes as 9. However, when a node leaves the
family tree, all nodes with a link to the leaving node must

Level:1

Level:2

Level:0

Level:3

2 5 151312108 17 20

2 1512

215 10

17

13

8

21

20

1… 01… 001… 1… 1… 1…01… 01… 01…001…

Level  vector

Fig. 2. Example of Ballistic Skip Graph without load balancing

be searched and assigned appropriate new link destinations.
For this reason, a family tree cannot accommodate sudden
leaves due to node failure and is not realistic in a distributed
environment.

Rainbow Skip Graph [5] combines several adjacent nodes
in the level-zero list of the skip graph, treating them as one
supernode, and constructs a skip graph of the supernodes.
At this time, the links of each level are shared among the
nodes in the supernode; thus, the size of the routing table is
O(1). However, to maintain the constant order, the number of
nodes in a supernode must be maintained at O(logN). For
this reason, it is necessary to estimate the total number of
nodes. Moreover, when the number of nodes in a supernode
falls outside the appropriate range, the supernode must be
merged or separated and reconstructed by appropriate links.
In an environment of frequent leaving and joining of nodes,
the high frequency of rebuilding the supernodes increases the
cost of maintaining the network.

III. BALLISTIC SKIP GRAPH

We propose Ballistic Skip Graph, a new structured overlay
with a routing table size of O(1) without the need for grouping
nodes, with supporting range queries which is a notable
advantage of skip graphs (range-query support). Unlike other
constant-degree structured overlays based on skip graphs,
Ballistic Skip Graph does not group the nodes, thus negating
the need to estimate the number of nodes and reconfigure
the group. This is especially important when nodes frequently
join and leave the network. All nodes in Ballistic Skip Graph
belong to level-zero list. In addition, each node belongs to a
randomly determined level list and is linked to an upper and
lower-level list. We first explain the simple network structure
without load balancing, then introduce the load balanced
overlay that constitutes Ballistic Skip Graph.

A. Ballistic Skip Graph without load balancing

Fig. 2 shows Ballistic Skip Graph without load balancing.
Like the skip graph, a key is assigned to each node, and
all nodes in the level-zero list participate in their key order.
The key of a node X is denoted by X.Key. The level-zero
list is constructed from each node X with X.predecessor
and X.successor, which define the predecessor and successor
nodes in the key order, respectively. Besides participating in

Proc. 23rd IEEE Symposium on Computers and Communications 
(IEEE ISCC 2018), June 2018



1: while true do
2: if X.upperSuccessor.key ≤ v then
3: X ⇐ X.upperSuccessor
4: else if X.levelSuccessor.key ≤ v then
5: X ⇐ X.levelSuccessor
6: else if X.lowerSuccessor.key ≤ v then
7: X ⇐ X.lowerSuccessor
8: else if X.successor.key ≤ v then
9: X ⇐ X.successor

10: else
11: return X
12: end if
13: end while

Fig. 3. Search for key v

the level-zero list, each node participates in the list of its level
of responsibility.

To determine the responsible level, each node is assigned
a random-bit string named as a level vector (LV). When
the LV is counted from the most significant bit, count at
the first appearance of one becomes the responsible level of
the node. The level of X is denoted as X.level. A set of
same-level nodes is built into a level list. The level list is
constructed from nodes X with the same-level predecessor
node X.levelPredecessor and the same-level successor node
X.levelSuccessor.

Furthermore, each node has links, enabling its move-
ment to lists of upper and lower levels. These links are
X.upperPredecessor and X.upperSuccessor, defining the
predecessor and successor nodes, respectively, in the list of
the next upper level. Moreover, X.lowerPredecessor and
X.lowerSuccessor are the corresponding nodes in the next
lower level. However, to maintain bidirectionally of the upper
and lower links, when a same-level node is nearer than the
upper or lower link destination node, the link to the upper or
lower level is not constructed.

In this network structure, the maximum number of entries
in the routing table of any node is 8.

As higher level nodes are sparse in the network, higher-level
shortcut links can skip more nodes than low-level shortcut
links. Therefore, the routing preferentially uses the higher-
level links. Fig. 3 displays the algorithm that searches the data
item of key v. In this algorithm, v is the successor key of the
start node X . The algorithm that searches the data item of the
predecessor key v is not shown, because it differs from Fig.
3 only by the replacement of successor with predecessor.

The node that forwards the message checks the upper link,
the level link, and the lower link in the target key direction
of the message in order. If the link destination key does not
exceed the target key, the message is transferred to that link
destination. When all destinations of the upper, level, and
lower links exceed the target key, the message is transferred
to the node adjacent to the level-zero list. Using the link in
this priority order, raises the level unless the transfer exceeds
the target key, and the routing transfers the message along the
high-level shortcut links.

Ballistic Skip Graph was named after its routing path, which
moves up and down at an oblique angle like a ballistic object.

MV:1…

MV:11… MV:00...MV:01…MV:10…

MV:0…Le
ve
l

Level:2

Level:0

Level:1

1 list

2 lists

4  lists

Fig. 4. Structure of Ballistic Skip Graph

This routing guarantees the reachability of the message by the
level 0 list, in which all nodes participate in the key order.

Like the skip graph, Ballistic Skip Graph conducts range
queries by normal routing and flooding. First, normal routing
finds a single node in the range, and flooding broadcast the
query to m nodes in the range. Flooding requires the same
number of steps as the routing path length of the m-nodes
Ballistic Skip Graph. The entire operation requires the same
number of steps as the normal routing path length.

B. Ballistic Skip Graph

As the routing in the structure of Section III-A favors
higher-level links, the load is concentrated at these links. For
load balancing in Ballistic Skip Graph, we construct more list
at higher levels than lower levels. The structure of Ballistic
Skip Graph is shown in Fig. 4.

Besides its LV, each node is assigned a random-bit string
known as its membership vector (MV). The MV of node X
is denoted as X.MV and its i prefix digits are represented by
X.MV ↾ i. Each node establishes a level link with a node in
the same responsible level and whose MV prefixes equal to
each other up to level number digit; that is, we construct a
level link between the nearest nodes X and Y satisfying the
following conditional expression:

X.level = Y.level ∧X.MV ↾ X.level = Y.MV ↾ Y.level

Under this rule, each node participates in the level-zero list
and a single level list.

Because 2i different level lists are constructed at each
level i, the number of lists increases at higher levels. More
specifically, the number of lists in the next upper level is
double the number of lists in the current level, so the upper
links of each node are directed toward two lists in the next
upper level, and the lower links are directed toward one list
of one lower level.

Each node at level i has four upper links.
upper0Predecessor and upper0Successor link to the
nodes in the list of the next upper level with matching
MVs up to prefix i, and with the (i + 1)th digit of the
upper M equaling 0. Likewise, upper1Predecessor and
upper1Successor link to nodes in the list of next upper level
with matching MVs up to prefix i, with the (i+ 1)th digit of
upper MV equaling 1. Like the rule in Section III-A, these

Proc. 23rd IEEE Symposium on Computers and Communications 
(IEEE ISCC 2018), June 2018



upper links are not constructed when a same-level node that
is nearer than the nodes of the upper link destinations.

Each node at level (i + 1) has two lower links.
lowerPredecessor and lowerSuccessor link to nodes in the
list of the next lower level with matching MVs up to prefix
i. Like the rule in Section III-A, these lower links are not
constructed when a same-level node is nearer than the nodes
of the lower link destinations.

In Ballistic Skip Graph, the maximum number of entries in
the routing table of any node is 10.

Routing is performed as described in the same way as
Section III-A, except that when there are two upward links,
we select the link closest to the target node.

Because the overlay is constructed in an autonomous decen-
tralized manner by each node, it must be correctly constructed
even when multiple nodes join and leave simultaneously. Also,
given that a node might suddenly leave due to failure or a
similar event, our method must allow nodes to leave without
giving special notice to the surroundings. Bidirectional lists
such as the level-zero and level lists maintain their structure
by adopting distributed doubly linked lists, as described in [8].
this structure is robust even in environments where nodes join
and leave frequently. To maintain the structure of the upper
and lower links, each node regularly updates its correct lower
links and the corresponding upper links are simultaneously
updated.

1) Join of a node: To join the network, a participating node
links to a known node already joined in the network. The
already-joined node searches its predecessor and successor
for the participating node by the normal routing algorithm. The
participating node then searches its own level list, gradually
raising the level finding adjacent nodes. In the node-insertion
algorithm (see Fig. 5), the appropriate upper link of X is
denoted by X.upper. Although the level list is searches
separately in the predecessor and successor directions, we
explain only the successor operation here (the predecessor op-
eration is identical, with successor replaced by predecessor).
Immediately after joining, the participating node traces its
successor through the level-zero list to discover a node at
its own level or lower. Stochastically, half of all nodes are
at level 1, so the target node is found in approximately two
steps. When the discovered and participating node are at the
same level, the participating node joins the level list of the
discovered node.

If the level of the discovered node is lower than the level of
the participating node, the participating node makes that node
a temporary lower link destination. By updating this temporary
lower link destination, the participating node finds the formal
downlink destination. During the update, the participating node
traces the level list, seeking an upper link that satisfies the three
conditions of the 10th line of Fig 5. Because a qualifying node
is usually found after approximately for steps, and temporary
lower link is updated less than its own level times, the update
operation requires O(logN) steps. Corresponding to the lower
link constructed from the upper-level node, an upper-level link
for the participating node is constructed as follow. The upper-

1: X ⇐ U.successor
2: while X.level ≥ U.level do
3: X ⇐ X.successor
4: end while
5: if X.level = U.level then
6: U.levelSuccessor ⇐ X
7: else
8: TEMP ⇐ X
9: while X ̸= NULL do

10: if X.upper.key > U.key
and X.upper.level ≤ U.level
and X.upper.MV ↾ U.level = U.MV ↾ U.level then

11: if X.upper.level = U.level then
12: U.levelSuccessor ⇐ X.upper
13: U.lowerSuccessor ⇐ TEMP
14: break
15: else
16: TEMP ⇐ X.upper
17: X ⇐ TEMP
18: end if
19: else
20: X ⇐ X.successor
21: end if
22: end while
23: U.lowerSuccessor ⇐ TEMP
24: end if

Fig. 5. Algorithm for inserting a node U

level node constructs a lower link and sends an instruction to
build an upper link to the linked node. The link destination
node checks its own routing table, confirms that the requisite
condition is satisfied, and updates the upper link. Each node
periodically updates its lower links.A lower link to a node
is regarded as a temporary lower link, and is updated by the
above operation. When the node does not have a lower link,
its searches for a lower link in its own level list. After tracing
the list of lower-link destinations, the node confirms whether
any node can become its lower-link destination.

2) Leaving of a node: A node can leave without any special
notification to the surrounding nodes. Therefore, even if a
node fails, it can be deleted by usual leave operation. Each
node judges that a node has left if there is no reply from the
destination node after a certain period of time. As the upper
and lower links are periodically rebuilt to ensure appropriate
connections, if the node of the upper or lower link destination
is detected as a leave, its link is simply removed.

If the adjacent node in the level list is detected as leave, the
level list can be corrected by searching the nearest node on
the opposite side of the leaving node. That node is detected
in the lower-level list for list levels-two or higher, and in the
upper level list for list levels 0 and level 1.

Fig. 6 shows the algorithm that deletes U from the level
list and corrects the level list when node D belongs to a level-
two or higher list, and when U which is D.levelSuccessor.
The appropriate upper and lower links of D are denoted as
D.upper and D.lower,respectively. The algorithm that deletes
D.levelPredecessor is identical, but replaces successor with
predecessor; moreover, the algorithm that deletes a node from
level 0 or 1 replaces of the lower list by the upper list.

Proc. 23rd IEEE Symposium on Computers and Communications 
(IEEE ISCC 2018), June 2018



1: X ⇐ D.levelPredecessor
2: while X.lower = NULL do
3: X ⇐ X.levelPredecessor
4: end while
5: X ⇐ X.lower
6: while X.upper.key < U.key do
7: X ⇐ X.levelSuccessor
8: end while
9: X ⇐ X.upper

10: while X.predecessor = NULL do
11: X ⇐ X.levelPredecessor
12: end while
13: X.levelPredecessor ⇐ D
14: D.levelSuccessor ⇐ X

Fig. 6. Algorithm for deleting a node U

IV. EVALUATION

In the evaluation experiment, the proposed method Ballistic
Skip Graph was simulated on the overlay network construction
toolkit Overlay Weaver [9], [10]. As a comparison target, we
prepared and simulated the normal skip graph in the same
environment. The average routing table sizes and average
routing lengths of the algorithms were compared with their
theoretical values in the Rainbow Skip Graph, which assumes
ideal configuration of the supernode (i.e., a supernode with
logN nodes). Measurements were performed after all nodes
had participated and the network was constructed. The exper-
imental environment was as follows.

• Overlay Weaver 0.10.5
• OS : Mac OS X 10.10.5
• CPU : Intel Core i5-4260U 1.4GHz
• Java : Java SE 8 Update 45

A. Comparison of average routing table size

To relate the number of nodes participating in the network
to the routing table size, we varied the number of nodes in
the experiment and measured the average routing table size at
each node number.

1) Average routing table size of Rainbow Skip Graph: The
theoretical routing table size was calculated as the estimated
total number of links in Rainbow Skip Graph divided by
the number of nodes in the network. When the total number
of nodes is N , Rainbow Skip Graph contains 2N links
for building a bidirectional list arranged in the key order.
In the ideal state, Rainbow Skip Graph requires additional
links for constructing a skip graph of N

logN supernodes, and
bidirectional links that connect the up and down nodes in each
supernode. As the nodes responsible for each level of the skip
graph (excluding the highest and zero levels) have the same
number of up and down links as the level links, the number of
upper and lower links is estimated by subtracting 2 N

logN from
the number of links in the constructed skip graph. Denoting
by SL the number of links required to construct an N

logN -node
skip graph, the total number of links in Rainbow Skip Graph
is 2SL−2 N

logN +2N . We measured SL in the simulation and
thereby calculated the average routing table size of Rainbow
Skip Graph.

Av
er

ag
e 

ro
ut

in
g 

ta
bl

e 
si

ze

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000

Skip Graph 

Ballistic Skip Graph

Rainbow Skip Graph

The number of nodes

(theoretical numbers )

Fig. 7. Average routing table sizes of the compared graph algorithms

The  size  of  routing  table

0%

5%

10%

15%

20%

25%

30%

35%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Skip  Graph  

Ballistic  Skip  Graph

Fig. 8. Distribution of the routing table size

2) Experimental result: The relationship between the node
number and the average routing table size is shown in Fig. 7.

The average routing table size of the ballistic skip graph was
approximately 5.3, regardless of the number of participating
nodes. This result confirms that the average routing table size
is O (1), whereas that of the skip graph grows as O(logN).
Moreover, the results of the ballistic and rainbow skip graphs
are comparable.

B. Comparison of routing table size distribution

In this experiment, the distributions of routing table sizes
were measured in 1000-node network. The routing table size
distributions of the normal and ballistic skip graphs are shown
in Fig. 8. The routing table size distribution was narrower
in Ballistic Skip Graph than in the standard skip graph and
was concentrated on small values. In Ballistic Skip Graph, the
routing tables of over 60% of the nodes were sized 5 or less.
A few nodes had a size10 routing table. Small routing tables
dominate in this graph because half of the nodes are level-one
nodes, which possess no lower links. Moreover, many nodes
in the uppermost levels participate in single-node level lists,
which contain no same-level links.

C. Comparison of average path length

To relate the number of nodes to the path length, we varied
the number of nodes and measured the average path length at

Proc. 23rd IEEE Symposium on Computers and Communications 
(IEEE ISCC 2018), June 2018



Av
er

ag
e 

pa
th

 le
ng

th

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000

Skip Graph

Ballistic Skip Graph

Rainbow Skip Graph

The number of nodes

(theoretical numbers )

Fig. 9. Average path length

each node number. Each node repeatedly searched for random
keys, and the path lengths were averaged 20 trials.

1) Average path length of Rainbow Skip Graph: We con-
sider the number of routing hops in Rainbow Skip Graph
with N nodes. In routing, messages are first sent upward
from the start node to the highest-level node in the supernode
by referencing the bidirectional list connecting the upper and
lower levels. Because messages pass through half of the
nodes in the supernode, the number of hops is 1

2 logN . After
reaching the highest level, routing is performed in a skip
graph constructed from N

logN supernodes. However, unlike
normal routing, messages are passed to lower levels within
the same supernode. Assuming that SP is the path length of
an N

logN -node skip graph of supernodes, the highest level of
the skip graph should be log N

logN . therefore, this operation
is performed in SP + log N

logN hops. When the supernode
containing the target key is reached, the route follows the
nodes by their key order in the supernode until it reaches the
target key. This behavior is expected to require 1

2 logN hops
on an average. Therefore, the average path length of Rainbow
Skip Graph is SP + log N

logN + logN .
2) Experimental result: The relationship between node

number and average path length is shown in Fig. 9. The path
length was longer in Ballistic Skip Graph than in skip graph.
However, routing was more efficient in the proposed method
than in Rainbow Sip Graph when the nodes numbered less
than 9000. Although the efficiencies were reversed in graphs
with more than 9000 nodes, the efficiency of the ballistic skip
graph did not worsen as exponential order.

We now consider the theoretical path length of Ballistic
Skip Graph If the level-zero link is not used in routing, the
route length is O(logN), which is ideally short because the
appropriate link level can always be used after the level rises.
However, when using a level-zero link, current node level
change to lower than appropriate link level, so the appropriate
level is reached after O(logN) hops. Since this appropriate
level is expected to be lower than the appropriate level before
using the level 0 link, the level will re-rise only O(logN)
times in the worst-case scenario. Therefore, in the worst case,
the path length is considered as O((logN)

2
). From the above

discussion, the expected path length of Ballistic Skip Graph is
between O(logN) and O((logN)

2
), consistent with the order

of path length determined in the experiment.

V. SUMMARY AND FUTURE WORK

This paper proposed a new structured overlay known as
Ballistic Skip Graph. The proposed graph supports range
queries by key, as in skip graph. However ,although the nodes
of a skip graph have multiple levels of shortcut links, Ballistic
Skip Graph determines the responsible level of each node as
one, which reduces the routing table size to O(1). Ballistic
Skip Graph negates the need for grouping the nodes and
estimating the total number of nodes, which greatly suppresses
the influence of nodes joining and leaving.

As confirmed in the evaluation experiment, the routing table
size of Ballistic Skip Graph was suppressed to a small con-
stant. The average path lengths of Ballistic Skip Graph were
then compared with those of skip graph and the theoretical
values of Rainbow Skip Graph.

In future work, we will determine the appropriate load
distribution of the graph. In the current structure, the number
of lists doubles with each increment of the level. In practice,
we verify the load of each link and consider the most suitable
number of lists.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers 2570008 and 16K12406.

This work was supported by New Energy and Industrial
Technology Development Organization (NEDO).

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, 2003.

[2] J. Aspnes and G. Shah, “Skip Graphs,” ACM Trans. Algorithms, vol. 3,
no. 4, Nov. 2007.

[3] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,” in International Workshop on Peer-to-Peer Sys-
tems. Springer, 2003, pp. 98–107.

[4] K. C. Zatloukal and N. J. A. Harvey, “Family Trees: An Ordered
Dictionary with Optimal Congestion, Locality, Degree, and Search
Time,” in Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2004, pp. 308–317.

[5] M. T. Goodrich, M. J. Nelson, and J. Z. Sun, “The rainbow skip graph: a
fault-tolerant constant-degree distributed data structure,” in Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
2006, pp. 384–393.

[6] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, pp. 668–676, 1990.

[7] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” in Proceedings of the twenty-first
annual ACM symposium on Principles of distributed computing, 2002,
pp. 183–192.

[8] K. Abe and M. Yoshida, “Constructing distributed doubly linked lists
without distributed locking,” in 2015 IEEE International Conference on
Peer-to-Peer Computing (P2P), Sep. 2015, pp. 1–10.

[9] K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay weaver: An overlay
construction toolkit,” Computer Communications, vol. 31, no. 2, pp.
402–412, 2008.

[10] K. Shudo, “Overlay Weaver,” http://overlayweaver.sourceforge.net,
2006.

Proc. 23rd IEEE Symposium on Computers and Communications 
(IEEE ISCC 2018), June 2018




