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Abstract—Average path length (APL) is an index of small-
world networks. Calculating APL accurately requires measuring
all of the shortest path lengths between two arbitrary nodes in a
network. However, obtaining an entire social network is difficult
because of security and privacy protection restrictions. Therefore,
sampling a portion of a network to estimate features can be
effective. In this research, we propose a method for estimating
APL using random walk, one of the crawling-based sampling
methods.

Index Terms—social network, complex network, graph sam-
pling, average path length

I. INTRODUCTION

The number of users of social networking services (SNS)
is increasing every year, and interest in analyzing such huge
networks is increasing. For example, the number of Facebook
users exceeds 1.8 billion in 2017. There is a method for
analyzing the structure of a graph in which an SNS user is a
node and the relation between two users is an edge. Networks
with huge and complex structures, such as a network of human
relations, are called complex networks [1], and most social
networks are such networks.

In complex networks, average path length (APL) is an
index of the small-world property, representing the “size” of
a network [2]. APL is the average of the shortest path lengths
(SPLs) between all two nodes in a network. Calculating
APL accurately requires obtaining all of the SPLs, but this
is unrealistic on a social network because information on
all nodes cannot be obtained owing to security and privacy
protection restrictions. Therefore, using graph sampling [3] to
estimate this feature of a network using only a portion of the
network can be effective.

There are two types of graph sampling, random sampling
and sampling by crawling. Random sampling is a method of
selecting nodes and edges from the network with independent
probabilities and sampling them. However, in a social network,
it is almost impossible to obtain information on all nodes in
the network. Sampling by crawling, a method of selecting and
sampling adjacent nodes and edges without needing to know
the entire network can thus be applied to social networks.

Breadth-first sampling (BFS) and snowball sampling, one
of the typical crawling algorithm, can not accurately estimate
features of the original network because the sample is biased
around the initial node. On the contrary, random walk (RW)
is likely to spread to every corner of the original network, and
thus might be able to estimate features of the original network
by analyzing the sampling list thoroughly. For these reasons,

we propose a method for estimating APL of a social network
using RW.

II. RELATED WORK

According to [4], there are two scenarios for sampling large
networks: full access scenario and restricted access scenario.
In full access scenario, we can access to every node (or
edge) of the network, and the main purpose of sampling is
visualization and acceleration. However, this scenario is not
related to our research, because the network we analyze is
SNS, which is mostly limited in access. Thus, our goal is to
find a way to obtain APL ”accurately” in restricted access
scenario.

Qi and colleagues experimented with APL estimation
through graph sampling [5]. They estimated APL using four
sampling methods including BFS. Except for BFS, these
methods assumes full access scenario and are difficult to apply
to social networks. Also, BFS is unstable in accuracy in terms
of network features estimation.

III. PREPARATION

In this section, we describe RW and the definition of APL.

A. RW

RW is a method of transitioning from the initial node to one
of the adjacent nodes and collecting the information regarding
that node. The simplest random walk, in which the transition
probabilities are uniformly random, is called simple random
walk (SRW). Let pvi,vj be the transition probability of SRW
from node vi to node vj :

pvi,vj =


1

dvi
vj ∈ N(vi)

0 otherwise
(1)

where dvi and N(vi) are the degrees of vi and the adjacent
node list, respectively.

The greatest advantage of random walk is that the visit
probability to each node can be calculated mathematically. For
example, the distribution π′ of the visit probability to each
node after step t by SRW is π′ = (Pr[xt = 1], P r[xt =
2], ..., P r[xt = n]). π′(i) converges to dvi/D [6], where π′(i)

is the ith element of π′. D is the sum of the degrees and is a
constant. That is, in SRW, the visit probability to each node
is proportional to the degree.

The number of steps T until the visit probability converges
to a stationary distribution is called the mixing time [7].
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Fig. 1. An example of graph sampling by random walk: A subgraph
comprising colored nodes and thick edges is denoted as G′.

The order of mixing time is approximately O(log2 n). Even
for two nodes in the sample list by random walk, if the index
is greater than the mixing time, it is known that they can be
regarded as random sampling from the network [8].

The sampling image of RW is shown in Fig. 1.

B. APL

APL is an indicator of the small-world property and is the
average of SPLs between all of the nodes in the network. In
this study, since the graph is assumed to be a graph without
weight, SPL is also called the shortest step number (SSN).
Letting Svi,vj be the SSN from node vi to node vj , APL L is
defined as

L =
2

n(n− 1)

∑
1≤i<j≤n

Svi,vj (2)

When the total number of nodes in the network n increases,
and when L is at most as high as log n, the network satisfies
the small-world condition. In this paper, we estimate APL by
graph sampling.

IV. PROPOSED METHOD

In this section, we propose a method for etimating the APL
of social networks by random walk.

A. Process of APL Estimation

The proposed method analyzes the sample list after sam-
pling by SRW.

1) Sampling: We acquire a sample list for r steps from
graph G by SRW. For the sampled node, the node ID and the
node ID of the adjacent node are held.

2) Selection of Node Pairs: To obtain the SSN, node pairs
are selected from the sample list. However, node pairs whose
indices are too close in the sample list are strongly correlated.
For example, there is a tendency for the SSN between the
ith node and the (i + 1)th node in the sample list to be one
necessarily and for the SSN between the node pairs having
close indices to be small. Therefore, in this method, we use
“some distance” node pairs in the sample list collected by
SRW. This condition is necessary to ensure that the nodes in
the pairs are chosen randomly from the graph according to the
stationary distribution of SRW, i.e., that they are sampled by
random sampling. For the sample list (vx1

, vx2
, ..., vxr

), we
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Fig. 2. Example of elements in I , if m = 2

define a set I of node pairs that are more than a particular
threshold m above the mixing time as follows:

I = {(vxi , vxj )|m ≤ j − i ∧ 1 ≤ i < j ≤ r, xi ̸= xj} (3)

These are the node pairs used for analysis. For example,
when a sample list as shown in the right-hand figure of Fig. 2
is acquired, if m = 2, the pair of nodes to be used as samples
is {(v1, v5), (v1, v6), (v2, v6)}, where the indices in the list are
separated by two or more.

3) Calculation of the SSN: The average of Svi,vj in the
node pairs in I is the value to be calculated; however, it
is impossible to determine that Svi,vj does not obtain the
topology of the entire G. Therefore, the SSN is obtained from
only the information held. Specifically, we obtain S′

vi,vj
for

G′ formed from nodes visited by SRW and its adjacent nodes.
．S′

vi,vj
satisfies the relation of Svi,vj ≤ S′

vi,vj
.

4) Weighting and Calculation of the Estimated Value L̂
of L: SRW samples in a manner biased toward high-degree
nodes. In other words, node pairs selected by this method can-
not successfully select samples of low-degree nodes. There-
fore, we consider using a weight ω to eliminate this bias.

Let ϕ(ω) be the average of S′
vi,vj

in node pairs in I
multiplied by the weight ω and ψ be the average of 1/dvi
in the sample list:

ϕ(ω) =
1

|I|
∑

(vi,vj)∈I

ωS′
vi,vj (4)

ψ =
1

r

r∑
i=1

1

dvi
(5)

These expected values are as follows:
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E[ϕ(ω)] = E[ωS′
vi,vj ] (6)

=
∑

1≤i<j≤n,i̸=j

ωS′
vi,vjπ

(i)π(j) (7)

=
∑

1≤i<j≤n,i̸=j

ωS′
vi,vj

dvi

D

dvj
D

(8)

E[ψ] = E[
1

dvi

] (9)

=
r∑

i=1

1

dvi
π(i) (10)

=
r∑

i=1

1

dvi

dvi

D
(11)

=
n

D
(12)

Define L̂ as follows:

L̂ =
ϕ( 1

dvi
dvj

)

ψ2
(13)

This expected value as follows with attention to Svi,vj ≤
S′
vi,vj

:

E[L̂] =
1

n2

∑
1≤i,j≤n,i̸=j

S′
vi,vj (14)

=
n− 1

n

2

n(n− 1)

∑
1≤i<j≤n

S′
vi,vj (15)

≥ n− 1

n

2

n(n− 1)

∑
1≤i<j≤n

Svi,vj (16)

=
n− 1

n
L (17)

That is, the estimated value L̂ converges to a value greater
than n−1

n L. Since n is sufficiently large in SNS, it can be
regarded as n−1

n L ≃ L. In addition, as we increase the sample
number by SRW, S′

vi,vj converges to Svi,vj , with the result that
L̂ approaches L.

B. Svi,vj and S′
vi,vj

The shortest path often includes nodes that are hubs of the
network. Considering a complex network, the subgraph G′ of
G has many hubs, since SRW has the property that it is easy to
visit a node with a high degree. In other words, it is considered
that there is no extremely large difference between the shortest
path in G′ and that in G.

C. How to Determine Threshold m

Since the mixing time is a value that varies depending on
the random walk method and the network to be used, it is
difficult to determine. If m is less than the mixing time, the
node pairs that are not independent, i.e., node pairs connected
by a relatively short number of steps, are sampled, with the
result that the estimated value converges to a smaller value
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Fig. 3. Transformation of L̂ resulting from increasing m from one in each
network

than expected. On the contrary, if m is too large, the elements
of I decreases in number and the estimated value must be
obtained with only a few samples, with the result that the
variance becomes large. Therefore, we must increment m,
estimate APL, and observe the change in L̂.

V. EXPERIMENT

In this section, we examine the method of determining m
mentioned in Section IV and we evaluate the estimate by the
proposed method using this m. For comparison, we use two
APL estimation methods, using BFS and determining APL of
a subgraph using SRW.

A. Network Datasets

For the experiment, we use four datasets, a network created
according to the Barabasi-Albert (BA) model, one of the gen-
eration models of complex networks, a random network, and
two datasets of the Stanford Network Analysis Project (SNAP)
[9]. The characteristics of each network are summarized in
Table II.

TABLE I
SUMMARY OF DATASETS

Network n D/n L

BA model 100, 000 9.9995 4.2989
Random Network 100, 000 9.9924 5.2631
Gnutella 62, 581 4.7275 5.9355
DBLP 317, 080 6.6221 6.7815

B. Preliminary Experiment

We experiment with each network on the method of de-
termining m, as described in Section IV. Specifically, we
sampled nodes by SRW as much as 5% of the total number of
nodes n, and observed changes in value resulting increasing
m. The results are shown in Fig. 3. According to this result,
increasing m in any network shows that the estimated value
begins to converge at some point. For example, looking at
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Fig. 4. Transformation of L̂ with respect to sample rate in each network

the Gnutella network in Fig. 3, we understand that the value
begins to converge with m approximately equal to 50. In other
words, the mixing time of the SRW in the Gnutella network
is roughly 50. Assuming that m is 100, it can be considered
that sufficiently independent node pairs can be selected. In this
way, m is determined for each network.

C. Estimation Experiment of Average Distance

We observe the change of L̂ mentioned in Section IV
resulting from changing the sample rate. Fig. 4 shows the
transition of L̂ for each network. m is determined as described
in Section V.

D. Results and Discussion

As the sample rate increases, the proposed method shows a
trend gradually approaching from a value larger than the true
value; in the three networks except the random network at the
sample rate of 5%, it turns out to be an accurate method. As
mentioned in Section IV, in a random network with uniform
degree and no large hub, it is considered to be a factor that
there is a large difference between Svi,vj and S′

vi,vj . Actually,
Fig. 5 shows a perfect match rate between Svi,vj and S′

vi,vj .
This shows that while the perfect match rate achieves 80% to
90% in the scale-free network, in the random network , it is
extremely low. However, social networks often have extremely
many friendships for celebrities and others, and mostly they
are scale-free networks. Therefore, the proposed method can
be expected to be effective for social networks.

VI. SUMMARY AND FUTURE CHALLENGES

In this paper, we proposed a method for estimating APL
by graph sampling using random walk for social networks
for which random sampling is difficult. Since the proposed
method uses a crawling-based graph sampling method, it can
be applied to real SNS. Furthermore, the proposed method is
an effective method for scale-free networks. The contribution
of this research is that more accurate values can be got than
any other sampling method In real social networks.
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Fig. 5. Near perfect match rate between Svi,vj and S′
vi,vj

The experiment reported in this study was conducted with
the sample rate set to 5% uniformly in each network. However,
when graph sampling is actually applied to SNS, it is desirable
to set the time for random walk to crawl the network as, e.g.,
one week, and to estimate features using the obtained sample.

Finally, although the proposed method uses only portion of
the network, the calculation time takes O(r3) for the number
of samples r using Dijkstra’s method, the simplest method.
Solving this problem requires considering the efficiency of
the algorithm. For example, instead of selecting node pairs
separated by more than m steps from the sample list by SRW,
if we select node pairs that are just m steps away, accuracy
will be slightly worse but the number of calculations of the
SSN can be expected to decrease. Evaluation of this trade-off
is a subject for a future study.
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