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Abstract—The clustering coefficient of social networks can be
estimated via an unbiased sampling technique such as random
walk sampling. To this end, we propose an algorithm that assumes
no prior knowledge of the network and that accesses the network
only through a publicly available interface. The clustering
coefficient of a network is estimated by counting triangles in
a non-backtracking random walk (NBRW). A social network
is viewed as an undirected graph and the NBRW is retrieved
through a public interface, which theoretically guarantees its
retrieval. In a simulation study on real social networks, the
proposed method achieved higher efficiency and accuracy than
the prior state-of-the-art method based on a simple random walk.

Index Terms—social network, clustering coefficient, random
walk

I. INTRODUCTION

Online social networks (OSNs) have become increasingly
popular in recent years. The most popular OSN, Facebook,
counted more than 1.8 billion members in January 2017 1. This
popularity has sparked growing interest in the properties of
OSNs. There are prior work [6], [10] that determines structural
measures of OSNs, including the clustering coefficient.
However, estimating network characteristics of OSNs is
a difficult task, because such networks are typically too
large to measure and their complete datasets are typically
unavailable, primarily because of privacy concerns [2].
For example, independent sampling which directly obtains
uniform, independent node samples for unbiased estimation,
is infeasible from such a large unknown network. In practical
scenarios, the social network may be available only through a
public interface such as an application programming interface
(API), which queries and obtains information about a target
node. In most social networks, the public interface provides a
list of a user’s neighboring nodes. By applying this function
iteratively to a random member of the neighbor list, one
can effectively perform a random walk on the network.
Considering the delay and query limit of APIs, the sample
should be small but representative. In the example of Fig. 1,
the researchers obtain a neighbor list by repeatedly querying
the API.

However, to calculate the clustering coefficient of a node,
the researcher must query nodes other than the sampled
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1https://www.statista.com/statistics/272014/global-social-networks-ranked-
by-number-of-users/

Fig. 1. Sampling through the API of a social network.

nodes. Therefore, the clustering coefficient of the network is
difficult to obtain. Hardiman et al. [8] estimated the clustering
coefficient of social networks from the sampling queries alone.
They achieved efficient estimation by counting triangles during
random walk sampling.

Conversely, a simple random walk usually diffuses slowly
across the network, leading to poor estimation accuracy. In
particular, because the next node is selected in purely random
fashion, the walk often returns to the previous node that
was just visited. This backtracking produces many duplicate
samples over a short to moderate time span, reducing the
estimation accuracy. Obviously, such backtracking transitions
should be avoided whenever possible, and the walk should be
steered toward unvisited nodes without biasing the estimation.
Lee et al. [9] proposed a non-backtracking random walk
(NBRW) with re-weighting that guaranteed not only unbiased
graph sampling but also smaller asymptotic variance of the
estimators than a simple random walk.

In this paper, we propose an efficient and accurate
method for estimating the clustering coefficients of networks.
While sampling, our method counts triangles via a NBRW.
Combining this way of counting triangles with NBRW is
not trivial. We combined these two ideas and adjusted to be
able to estimate unbiased. We theoretically proved that the
proposed method can perform the unbiased estimation and
showed theoretical and experimental results that it is more
efficient and better than the existing method.

This paper is organized as follows. Section II shows related
work. Section III provides notations and preliminaries. Section
IV describes our method. Section V compares the method with
the existing method. Section VI summarizes our contributions.

II. RELATED WORK

This section describes related work, in which the average
clustering coefficient is estimated by the crawling-based graph
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sampling method. Ribeiro et al. [10] estimated the network
average clustering coefficient using a simple random walk
(SRW). Their computation requires augmenting the set of
sampled nodes with further exploration of the ego network.
To calculate the local clustering coefficient at a special node
v, a range of ego networks of v must be known. Gjaka et
al. [6] explored an OSN graph using a Metropolis-Hastings
random walk that generates uniform samples from the node
set. This method also requires further exploration of the ego
network. Such methods are inefficient because exploring the
ego network requires additional API queries.

Hardiman et al. [8] estimated the network average clustering
coefficient by a random walk that did not explore the ego
network. Their method outperformed competing approaches
[6], [10] on all social networks in their study [8]. However,
they used an SRW, which (as mentioned above) diffuses
slowly over the space and compromises the estimation
accuracy. During a transition, the SRW frequently returns to
the just-visited node.

In this paper, we perform a NBRW that avoids the
previous node whenever possible. The proposed method is
conceptualized in Section 3 and developed in Section 4. In
Section 5, we show that the proposed algorithm outperforms
Hardiman et al.’s approach [8] on various social networks. The
paper briefly concludes with Section 6.

III. NOTATIONS AND PRELIMINARIES

This section describes the notations, definitions, and the
basic idea the of the proposed method (counting triangles
during NBRW) .

A. Notations

The social graph of an OSN can be modeled as a connected,
undirected graph G = (V,E) with a set of nodes V =
{v1, v2, . . . , vn} and a set of edges E. We assume that 3 ≤
|V | = n < ∞. We also assume that graph G has no self-loops
and no multi-edges. Let N(v)

def
= {w ∈ V : (v, w) ∈ E} be

the neighbor set of node v ∈ V , di = kvi = |N(vi)| be the
degree of node v.

A triplet of nodes (vj , vi, vk) is called connected if there is
an edge between vj and vi, and an edge between vi and vk,
and j < k.

A triangle is a connected triplet (vj , vi, vk) in which vj and
vk are connected by an edge. Let △i be the number of edges
between neighbors of vi.

The local clustering coefficient ci [5] of node vi defines the
ratio of the number of (vj , vi, vk) triangles to the number of
(vj , vi, vk) connected triplets. Formally,

ci =


0 di = 0or di = 1

2△i

di(di − 1)
otherwise

ci ∈ [0, 1] (1)

The network average clustering coefficient C [5] is defined
as

Fig. 2. Transitions of an NBRW over the nodes of G. The walker is currently
located at node w (with kw = 4) and has just visited node v. From w, it will
move to any neighbor except node v with equal probability.

C =
1

n

n∑
i=1

ci (2)

Our proposed method estimates the network average
clustering coefficient.

The first step of the estimation algorithm generates a random
walk. A random walk with r steps on G, denoted by R =
(x1, x2, . . . , xr), starts from an arbitrary node vx1 and then
moves to a chosen probabilistically selected neighboring node.
This process repeats r − 1 times.

Herein, we apply two random walks: the SRW and the
non-backtracking random walk (NBRW) . The SRW on G
moves from a node to a neighboring node, which is randomly
and uniformly selected with with probability 1

di
. The NBRW

avoids backtracking to the previous node whenever possible.
Let Pr[A] denote the occurrence probability of event A. The

distribution induced by random walk, is defined as

π = (Pr[xr = 1],Pr[xr = 2], . . . ,Pr[xr = n]). (3)

After many random walks, the probability Pr[xr =
i] converges to a certain value π(i). The vector π =
(π(1), π(2), . . . , π(n)) is called the stationary distribution of
G. As is well known, the stationary distribution of the SRW
is di/2|E| [3].

B. Non-Backtracking Random Walk

This subsection overviews the graph sampling method with
the NBRW proposed in [9] and presents its algorithm. Our
proposed algorithm is based on the NBRW, which minimizes
backtracking to the previous node while preserving the same
stationary distribution as the SRW.

In an NBRW with more than two neighbors (kw ≥ 2),
the walker at current node w randomly selects the next node
to visit among the neighbors of node w, except for the
previous node v. If the current node w has only one neighbor
(kw = 1), the walk always returns to the previous node v. The
non-backtracking nature of the NBRW as it traverses the nodes
of G is depicted in Fig. 2. The NBRW moves from its initial
node, which can be arbitrarily chosen, to any of its neighboring
nodes with equal probability (because no previous nodes have
been visited).
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C. Counting Triangles

Herein, we apply the “counting triangles” technique to the
NBRW. Previously, Hardiman et al. [8] estimated the network
average clustering coefficient by this technique in an SRW.

Let (xi−1, xi, xi+1) be any set of consecutive triplets in a
random walk R = (x1, x2, . . . , xr). By the nature of random
walks, (vxi−1 , vxi , vxi+1) is a connected triplet. Moreover,
if nodes vxi−1 and vxi+1 are connected by an edge, then
(vxi−1 , vxi , vxi+1) is a triangular triplet (x1, x2, x3) is a
triangular triplet because an edge connects node vx1 to node
vx3 . Conversely, the consecutive triplet (x2, x3, x4) is not a
triangular triplet because no edge exists between nodes vx2

and vx4 .
In practical situations, when the neighbor list includes the

two most recently sampled nodes during transition to the next
node, then nodes vx1 and vx3 are connected. For example,
consider the walker located at node vx3 = v3 in Fig. 3. The
neighbor list of node vx3 is (v1, v2, v3, v4), which includes the
two most recently visited nodes vx1 = v1. Therefore, we can
confirm that during the random walk sampling, an edge exists
between nodes vx3 and vx1 .

It is possible to ascertain the existence of an edge by
checking whether the last two sampled nodes have been
included in the neighbor list when making transition to next
node. For example, In Fig. 3, when a walker stays at a node
vx3 = v3, a neighbor list of the node vx3 is (v1, v2, v3, v4),
and the last two sampled node vx1 = v1 is included in the
neighbor list. Therefore we can confirm that an edge exists
between the nodes vx3 and the node vx1 while sampling via
random walk.

The counting triangles technique estimates the network
average clustering coefficient because the local clustering
coefficient defines the triangle-membership proportion of a
node. However, this method is problematic when transiting
to the previous node in an SRW. For example, in Fig. 4, the
consecutive triplet (x1, x2, x3) can never be a triangular triplet
because the SRW backtracks to the previous node. Generally,
backtracking to the previous node prevents a triangular path.
Therefore, unless the edges are weighted, the proportion of
triangles in the SRW is expected to be low.

In fact, by upward weighting of the counted triangles,
the SRW-based approach proposed in [8] enables unbiased
estimation of the network average clustering coefficient,
lowering the estimation accuracy.

This problem is overcome by the NBRW, as shown the
following section.

IV. PROPOSED METHOD

We now propose a method that estimates the network
average clustering coefficient of social networks via an NBRW.
Our idea stems from the counting triangles technique [8].
We prove that our estimate converges to the correct value,
and demonstrate the superior effectiveness and accuracy our
method over the prior method.

Fig. 3. Example of the counting triangles technique in random walk sampling.

Fig. 4. Example of transition to the previous node in the SRW.

Given a NBRW R′ = (x1, x2, . . . , xr), we define a new
variable ϕ′

k as follows: for 2 ≤ ∀k ≤ r − 1, if nodes vxk−1

and vxk+1
are connected, ϕ′

k is 1, otherwise it is 0.

When vxk
and vi are equal, the expected value of ϕ′

k is

E[ϕ′
k | xk = i]=

2△i

di(di − 1)
= ci (4)

The first equality holds because there are di(di−1) equally
probable combinations of (xk−1, vi, xk+1)(xk−1 ̸= xk+1),
of which only 2△i form a triangle (vj , vi, vk) or a reverse
triangle (vk, vi, vj). The third equality holds by definition of
clustering coefficient of node vi.

To estimate C, we introduce two variables, i.e., the weighted
sum Φ of ϕjs and the sum Ψ of the reciprocal degrees of the
sampled nodes:

Φ=
1

r − 2

r−1∑
k=2

ϕ′
k

1

dxk

(5)

Ψ=
1

r

n∑
k=1

1

dxk

(6)

The expectations of Φ and Ψ are easily determined by
linearity of the expectation and Eq (4):
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E[Φ]=E[ϕ′
k

1

dxk

]

=
n∑

i=1

π′(i)E[ϕ′
k | xk = i]

1

di
(7)

=

n∑
i=1

di
2|E|

ci
1

di
(8)

=
1

2|E|

n∑
i=1

ci (9)

E[Ψ]=E[
1

dxk

]

=
n∑

i=1

π′(i)
1

di
(10)

=

n∑
i=1

di
2|E|

1

di
(11)

=
n

2|E|
(12)

As proven in [9], the NBRW and SRW can have the same
stationary distribution π′, namely, π′(i) = di/2|E|.

From the above equations, C is derived as

C =
1

n

n∑
i=1

ci =
E[Φ]
E[Ψ]

(13)

Intuitively, both Φ and Ψ converge to their expected values
and the estimator Φ/Ψ converges to C, as shown below. The
estimator Ĉ of C, is defined as follows:

Ĉ
def
=

Φ

Ψ
(14)

To show that it is more effective than the existing method by
SRW, we calculate the variance value for the local clustering
coefficient in Eq (4).

V ar[ϕ′
k]=E[(ϕ′

k)
2]− {E[ϕ′

k]}2

=
2△i

di(di − 1)
· 12 − ci

2 (15)

Conversely, the expectation value of the local clustering
coefficient by SRW in [9] is as follows:

E[ϕk
di

di − 1
] = ci (16)

ϕk is defined as follows: given an SRW R =
(x1, x2, . . . , xr) for 2 ≤ ∀k ≤ r − 1, and , if nodes vxk−1

and vxk+1
are connected, ϕ′

k is 1, otherwise it is 0.
This variance value is

V ar[ϕk
di

di − 1
]=E[(ϕk

di
di − 1

)2]− {E[ϕk
di

di − 1
]}2

=
2△i

di
2 · { di

di − 1
}2 − ci

2 (17)

According to Eq(15) and Eq(17),

V ar[ϕ′
k] < V ar[ϕk

di
di − 1

] (18)

holds. Therefore, the proposed method has smaller variance.

V. EVALUATION

Finally, we support our theoretical findings in a simulation
study. We use various social network datasets published by
by the Stanford Network Analysis Project (SNAP) [1]. The
dataset statistics are listed in Table I.

A. Networks on public datasets

The effectiveness of each estimator was evaluated on social
networks with known structure published by the Stanford
Network Analysis Project (SNAP) [1]. The dataset statistics
are listed in Table I .

1) Amazon Network: Based on the Customers Who Bought
This Item Also Bought feature of the Amazon website, this
network was collected by crawling the Amazon website. If a
product i is frequently co-purchased with product j, the graph
contains an undirected edge from i to j. Each product category
provided by Amazon defines a ground-truth community [1].

2) Digital Bibliography and Library Project (DBLP):
DBLP provides a comprehensive list of research papers in
computer science. In the DBLP co-authorship network, two
authors are connected if they have published at least one paper
together.

3) Gowalla: Gowalla is a location-based social networking
website in which users share their locations by checking in.
This undirected friendship network was collected through the
public API of the network. However, the service closed in
January 2012.

4) LiveJournal: LiveJournal is a free online blogging
community in which users declare and share their friendships.

TABLE I
NETWORK STATISTICS

Network n D/n C
Amazon 334,863 5.530 0.3967
DBLP 317,080 6.622 0.6324

Gowalla 196,591 9.668 0.2367
LiveJournal 3,997,962 17.35 0.2843

Fig. 5 plots the the normalized root mean squared error
(NRMSE) versus the number of steps in the random walk

[4], [10]. The NRMSEs calculated as 1
C

√
E[(Ĉ − C)2], we

determined in 1000 independently simulations of each case.
To estimate the NRMSE, each simulation was run

independently 1000 times. In all simulations, the initial
position of each random walk was drawn from the stationary
distribution as described in [4], unless otherwise specified. In
practical implementations, one can specify a burn-in period
that allows the random walk to reach the steady-state [7].

Fig. 5 compares the NRMSEs of the proposed algorithm
and the previous algorithm, which uses the counting triangles
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Fig. 5. Normalized root mean squared error (NRMSE) in the network clustering coefficient versus step number of the random walk.

technique in the SRW [8]. The results are presented for both
algorithms on all datasets. The proposed NBRW estimator
consistently outperformed the SRW estimator.

VI. CONCLUSIONS

We proposed a method that estimates the network average
clustering coefficient via a NBRW. The proposed algorithm
considerably outperformed the prior state-of-the-art method on
various social networks.
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