
Dissemination of Edge-Heavy Data
on Heterogeneous MQTT Brokers

Ryohei Banno∗†, Jingyu Sun∗, Masahiro Fujita‡, Susumu Takeuchi∗ and Kazuyuki Shudo†
∗ NTT Network Innovation Laboratories, Tokyo 1808585, Japan, Email: banno.ryohei@lab.ntt.co.jp

† Tokyo Institute of Technology, Tokyo 1528550, Japan
‡ Kyoto Sangyo University, Kyoto 6038555, Japan

Abstract—MQTT is one of the promising protocols for ex-
changing IoT data. IoT data have a characteristic called “edge-
heavy” which means that things at the network edge generate
a massive volume of data with high locality of utilization. For
dissemination of such edge-heavy data, an architecture in which
multiple MQTT brokers placed at the network edges cooperate
with each other is quite effective. This edge-based architecture
makes latency lower, as well as reducing consumption of cloud
resources. However, under this kind of architecture, heterogeneity
could be a vital issue, i.e., an appropriate product of MQTT
broker could vary according to the different environment of each
network edge. In this paper, we propose Interworking Layer
of Distributed MQTT brokers (ILDM), which enables arbitrary
kinds of MQTT brokers to cooperate with each other. We provide
two basic cooperation algorithms, including the way to furnish
MQTT-specific functions such as QoS and Retain. To evaluate
the feasibility of ILDM, we also formulate a benchmark method
which can be used for both a single broker and multiple brokers.
Experimental results show that the throughput of five brokers
running together by ILDM is improved 4.3 times at maximum
than that of single broker.

I. INTRODUCTION

MQTT has attracted much academic and industrial interest
in recent years as one of the key technologies of IoT services
[1]. It is a protocol of topic-based pub/sub, in which mes-
sages are exchanged through logical channels called “topics”.
MQTT uses a server called “broker” to manage topics and
mediate between publishers and subscribers. This paradigm
provides decoupling between clients, e.g., each publisher has
no concern with the location of subscribers that will receive
its message [2].

Although typical IoT systems deploy an MQTT broker in
the cloud [3] as shown in Figure 1(a), this centralized architec-
ture can cause some issues due to the following characteristics
of IoT data:

• A massive volume of data is generated at the network
edge, rather than in the cloud.

• Many of the data have high locality of utilization; a data
generated in an area is often utilized in the same area.

• Data are often utilized for event-driven services, so that
the capability of exchanging data in real-time is indis-
pensable.

Such characteristics are called “edge-heavy” [4]. The problems
of managing edge-heavy data with the above cloud-based
architecture are resource consumption and latency. That is,

broker

clients

(publishers or subscribers)

cloud

edge

(a) Cloud-based

broker

brokers

cloud

edge

clients

(publishers or subscribers)

(b) Edge-based

Fig. 1. Example of architectures for disseminating edge-heavy data.

heavy load is concentrated with oppressing cloud resources
such as network bandwidth, and required time from a publisher
to a subscriber tends to be long due to the distance between
devices and cloud data centers.

Cooperation of multiple MQTT brokers placed at the edges
is a solution to the problems. In this architecture, shown in
Figure 1(b), the cloud broker does not need to communicate
with all clients directly, so that the consumption of cloud
resources is reduced and consequently overall throughput is
increased. Furthermore, it makes latency lower for locally
consumed data, because the edge brokers are closer to IoT
devices. There could be several variations of this architecture,
such as cascaded edge brokers and cooperation without the
cloud broker.

Assuming such edge-based architecture, there is an issue
of heterogeneity of brokers. Namely, an appropriate product
of a broker is different according to an environment of each
network edge. There are many choices: open source or propri-
etary, software or embedded appliance, difference in supported
OSs or functional features, and so on. To construct the edge-
based architecture, such heterogeneous brokers have to coop-
erate with each other. Even though some of existing products
have functions of cooperation between multiple brokers, e.g.,
“bridge” of Mosquitto [5] and “cluster” of HiveMQ [6], there
is no interoperability between different products because any
cooperation protocols are not standardized in the latest version
3.1.1 of MQTT specification [7].

In this paper, we propose Interworking Layer of Distributed978-1-5090-4026-1/17/$31.00 c⃝ 2017 IEEE

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

MQTT brokers (ILDM), which enables arbitrary kinds of
brokers to cooperate with each other. ILDM provides APIs
which facilitate rapid development of variety of cooperation
algorithms. We also propose two basic algorithms using the
APIs.

In addition to the heterogeneity, there is another issue of
benchmark. To evaluate and determine an appropriate architec-
ture, benchmark method which can be used for both a single
broker and multiple brokers is needed. For this matter, we
formulate a benchmark method which ensures that error ratios
of resulted performance are not more than 5 percent.

The contributions of this paper are threefold:
• First, we give a fundamental idea of ILDM with two basic

cooperation algorithms.
• Second, we provide a practical method for benchmark of

MQTT broker/brokers.
• Third, we show the feasibility of ILDM-based coopera-

tion through experiments.
The rest of this paper is organized as follows. Section II

illustrates a fundamental idea of ILDM-based cooperation.
Section III describes two basic algorithms of cooperation using
ILDM. In section IV, we introduce a practical method for
benchmark of MQTT broker/brokers. Section V discusses the
results of experiments to confirm the feasibility of ILDM-
based cooperation. Section VI explains related studies. Finally,
we summarize and conclude this paper in Section VII.

II. MQTT AND ILDM

A. Overview of MQTT

MQTT [7] is a protocol of topic-based pub/sub, standardized
by OASIS. It is known for lightweight design such as a
minimum of two bytes header size. As we stated before, a
broker manages topics and mediates between clients. Below
is an example flow of using MQTT.

1) A client X sends CONNECT message to a broker. This
establishes a connection between X and the broker.

2) X sends SUBSCRIBE message to the broker. This mes-
sage informs the topics of interest of X to the broker.

3) Another client sends PUBLISH message to the broker,
with specifying a topic. If the topic is included in the
above topics of interest, this message is forwarded to X
by the broker.

4) X sends DISCONNECT message to the broker, to ter-
minate the connection.

MQTT provides several useful functions for clients, such as
“QoS”, “Retain” and “Will”.

QoS provides capability of configuring the level of delivery
confirmation. A client and a broker try to confirm the delivery
of a PUBLISH message and resend it if needed, according
to the QoS level. Three levels are defined: “At most once
delivery”, “at least once delivery”, and “exactly once delivery”.

Retain is for delivering a latest message in the past to a
new subscriber. A PUBLISH message has a flag of Retain.
If the flag is set to true, a broker stores the message until
a new PUBLISH message whose Retain flag is true of the

MQTT

broker
(Local broker)

MQTT

client
(Local client)

ILDM

node

MQTT

broker
(Remote broker)

MQTT

client
(Remote client)

ILDM

node
(Remote ILDM node)

MQTT

broker
(Remote broker)

MQTT

client
(Remote client)

ILDM

node
(Neighbor ILDM node)

Publication flooding

Cooperation algorithms

Subscription flooding ・・・

ILDM core

(session management, message generation, etc.) ILDM node

Fig. 2. Interworking Layer of Distributed MQTT brokers.

same topic arrives. This stored message will be forwarded to
new subscribers of the topic.

Will enables to inform unexpected close of a connection.
CONNECT message has a flag of Will. If the Will Flag is
set to true, a broker stores a Will message and Will topic
which are also included in the CONNECT message. The Will
message will be published from the broker, when it detects
the connection with the client which has sent the CONNECT
message is unexpectedly closed.

B. Fundamentals of ILDM

In this paper, we propose Interworking Layer of Distributed
MQTT brokers (ILDM). ILDM-based cooperation is com-
posed by multiple brokers and ILDM nodes. An ILDM node
is arranged between a broker and clients as shown in Figure 2.
As well as relaying MQTT clients and a broker as if it were a
proxy, an ILDM node can connect with other ILDM nodes so
that multiple and arbitrary kinds of brokers can communicate
with each other via ILDM nodes.

Regarding an ILDM node, we assume the following nota-
tions: local client denotes a client which directly connects with
the ILDM node, local broker denotes a broker which directly
connects with the ILDM node, remote ILDM node denotes
one of the other ILDM nodes included in the whole cluster,
neighbor ILDM node denotes one of the remote ILDM nodes
which directly connects with the ILDM node, remote client
denotes a client which connects with a remote ILDM node,
remote broker denotes a broker which connects with a remote
ILDM node.

As there can be a variety of cooperation algorithms, a core
component of an ILDM node provides APIs so that algorithm
developers can implement their algorithms easily. For example,
there is a callback API:

void mqt tMessageAr r ived (S e s s i o n I n f o s e s s i o n , MsgType
type , byte [] message)

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

MsgType indicates the type of MQTT messages such as
CONNECT, CONNACK and PUBLISH. This API enables to
execute arbitrary processes when an ILDM node receives a
corresponding type of an MQTT message.

Such APIs are useful for not only cooperation, but also
various data processing, e.g., validation of data format.

III. COOPERATION ALGORITHMS

In this section, we propose two basic cooperation algo-
rithms: Publication Flooding (PF) and Subscription Flooding
(SF). These algorithms suppose ILDM nodes are connected in
a tree structure which does not include closed paths.

A. PF-based cooperation

PF is a method to share each PUBLISH message among all
brokers via ILDM nodes.

Each ILDM node relays a SUBSCRIBE message received
from a local client to its local broker. Regarding a PUBLISH
message, an ILDM node does not only relay, but also transfers
to its neighbor ILDM nodes. ILDM nodes, which receive
the transferred PUBLISH message, send it to their own local
broker. They further transfer the message to their neighbor
ILDM nodes, if exist. Eventually, all connected brokers receive
the PUBLISH message and forward it to their local clients
subscribing to the corresponding topic.

Figure 3 shows an example. There are five sets of a broker
and an ILDM node: B1 and I1 to B5 and I5. There are also
three clients: C1 to C3. We consider the following three steps.

1) Step 1: C1 subscribes to a topic t.
2) Step 2: C2 subscribes to the same topic t.
3) Step 3: C3 publishes to the same topic t.

Dotted arrows represent the flow of SUBSCRIBE messages,
while solid arrows are the PUBLISH messages’.

When I2 and I3 receive a SUBSCRIBE message from C1

and C2, they just relay it to their local broker. As well as being
relayed alike, a PUBLISH message from C3 is transferred by
I5 to I3, and spreaded to all ILDM nodes in a chain reaction.

B. SF-based cooperation

Unlike PF, the basic idea of SF is to share subscription
information among ILDM nodes.

When an ILDM node receives a SUBSCRIBE message, it
informs the subscription information, e.g., topic name and
QoS level to its neighbor ILDM nodes, as well as relays
the message to its local broker. We call this operation “inter-
subscribe”, because it is as if it were the subscribe operation of
the MQTT protocol between two ILDM nodes. For example,
when an ILDM node X informs the information to another
ILDM node Y , it means that “ILDM node X inter-subscribes
against ILDM node Y ”.

When an ILDM node is about to inter-subscribe against
a neighbor ILDM node, it checks overlapping with existing
subscriptions. If an overlap is judged to be present, the
ILDM node will not inter-subscribe redundantly. That is, inter-
subscribe operations between ILDM nodes are to share only
the difference from existing subscriptions.

Regarding a PUBLISH message, as well as relaying to the
local broker, an ILDM node transfers it to neighbor ILDM
nodes which have inter-subscribed to the topic of the message.
ILDM nodes which receive the transferred PUBLISH message
send it to their own local broker. They further transfer the
message to their neighbor ILDM nodes which have inter-
subscribed to the topic. Eventually, all brokers which have
local clients subscribing to the topic receive the PUBLISH
message and forward it to corresponding subscribers.

Figure 4 shows an example. The topology and scenario is
same as Figure 3. When I2 receives a SUBSCRIBE message
from C1, it does not only relay the message to its local broker,
but also inter-subscribes against I1, I3 and I4. I3 further inter-
subscribes against I5. In the next step, I3 receives a SUB-
SCRIBE message from C2 and subsequently inter-subscribes
against I2. I3 does not inter-subscribe against I5, because I3
has already inter-subscribed in the first step. Similarly, I2 does
not inter-subscribe against I1 and I4.

A PUBLISH message from C3 is transferred by I5 to I3,
because I3 has inter-subscribed to the topic t against I5. I3
also transfers the message to I2, and finally C1 and C2 receive
the message.

C. Furnishing MQTT-specific functions

As we described in Section II-A, MQTT has some specific
functions. We show the way to enable clients to use these
functions transparently over multiple brokers with PF and SF
method.

1) QoS: Both in PF and SF, An ILDM node relays QoS-
related messages such as PUBACK so that QoS level config-
uration is available between a local broker and local clients.
Further, we can apply the idea of QoS control to transferring
a PUBLISH message between adjacent ILDM nodes. This
enables distributed brokers to adjust a tradeoff of reliability
and performance.

2) Retain: PF method can provide Retain function without
adding special processes, because each broker receives all
PUBLISH messages and stores them if they have retain-flag
being set to true. In case of SF method, when an ILDM node
receives a PUBLISH message with retain-flag set to true, it
needs to transfer the message to adjacent ILDM nodes even
though the topic is not inter-subscribed. This makes sure each
broker can send out an appropriate retained message when a
new subscriber of the corresponding topic comes.

3) Will: As described above, an ILDM node transfers a
PUBLISH message when it receives it from local clients, not
from a local broker. Hence, a will-message which comes from
a local broker is not transferred to the neighbor ILDM nodes
within the basic procedures of PF and SF methods.

According to the MQTT specification of version 3.1.1, a
PUBLISH message from a broker does not have any infor-
mation to know whether it is an will-message or not. Conse-
quently, an ILDM node itself needs to store a will-message and
a will-topic internally when it receives a CONNECT message.

When an ILDM node detects the unexpected closing of a
network connection with a local client or the local broker, and

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

B1

I1

C1

I2

B2

I4

B4

I3

B3

C2 I5

B5

C3

Step 1. C1 subscribes to topic 𝑡

B1

I1

C1

I2

B2

I4

B4

I3

B3

C2 I5

B5

C3

Step 2. C2 subscribes to topic 𝑡

B1

I1

C1

I2

B2

I4

B4

I3

B3

C2 I5

B5

C3

Step 3. C3 publishes to topic 𝑡

Fig. 3. Example of PF-based cooperation.

B1

I1

C1

I2

B2

I4

B4

I3

B3

C2 I5

B5

C3

Step 1. C1 subscribes to topic 𝑡

B1

I1

C1

I2

B2

I4

B4

I3

B3

C2 I5

B5

C3

Step 2. C2 subscribes to topic 𝑡

B1

I1

C1

I2

B2

I4

B4

I3

B3

C2 I5

B5

C3

Step 3. C3 publishes to topic 𝑡

Fig. 4. Example of SF-based cooperation.

if the will-flag of the connection is set to true, it sends out
the corresponding will-message to its neighbor ILDM nodes.
The ILDM node needs not to send the will-message to local
clients, because the local broker sends it. In case of SF method,
sending will-messages to neighbor ILDM nodes is executed
only if the will-topics are inter-subscribed.

D. Qualitative comparison

In PF method, each broker receives all PUBLISH messages
regardless of the presence of corresponding subscribers. This
means that the total number of ingress messages on each
broker is basically same as the case of a single broker.
Therefore, the effect of load distribution mainly depends on
a dispersion condition of subscribers. The more scattered the
subscribers are, the more effective this method is.

In SF method, a PUBLISH message is delivered to brokers
which have subscribers of the same topic as the PUBLISH
message. Brokers, which do not have such subscribers and are
not in the paths of delivering the message, do not receive it.
Hence this method is effective when publishers and subscribers
of a same topic are convergently placed on a small sub-tree.

IV. BENCHMARK METHOD

To verify the effects of ILDM, we formulate a benchmark
method which can be applied for both a single broker and
multiple brokers.

A. Performance indexes

We consider the following four viewpoints as performance
indexes of MQTT brokers.

ingress throughput
Number of messages brokers receive from publishers
per unit time.

egress throughput
Number of messages brokers send out to subscribers
per unit time.

latency
Required time since a publisher sends a message
until a subscriber receives it.

loss rate
Ratio of the number of missed messages to the num-
ber of messages which subscribers should receive.

We also define the limit of performance as follows.

Definition 1. If measured throughput satisfies the following
restriction, the performance is under the limit.

{egress throughput}
{ingress throughput}×{sp-ratio} ≥ 0.99

where
sp-ratio =

∑
i P (ti)∗S(ti)∑

i P (ti)
,

P (ti) = {number of publishers of ith topic},
S(ti) = {number of subscribers of ith topic}

This is based on the idea that if egress throughput is less
than ingress throughput multiplied by sp-ratio, the number of
pending messages in the brokers is monotonically increasing.
In other words, this definition represents the limit of allowable
continuous load.

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

TABLE I
SPEC OF SERVERS

Type S1 Type S2

Processor Atom C2750 (8 core,
2.4 GHz)

Xeon E5-2690V3 (12
core, 2.6 GHz) × 2

Memory 16 GB 256 GB
OS Ubuntu 14.04 Ubuntu 14.04
NW 1 GbE 10 GbE

B. Benchmark procedure

To find the maximum performance satisfying the restric-
tion defined in Definition 1, we introduce a new benchmark
method. This method tries to find the point of the very limit
by varying the interval of PUBLISH messages. It is conducted
along with the following steps.
Step 1: Conduct measurement repeatedly with doubling the

interval of sending a PUBLISH message. For exam-
ple: 1ms, 2ms, 4ms, 8ms, 16ms,

Step 2: From the results of Step 1, find the minimum interval
satisfying the restriction stated in Definition 1.

Step 3: Divide the segment between the minimum interval and
the smaller interval next to the minimum interval into
20. For example, if the minimum interval is 4ms, we
divide the segment between 4ms and 2ms like as :
2ms, 2.1ms, 2.2ms, . . . , 3.9ms, 4ms.

Step 4: Conduct measurement for each interval calculated in
Step 3.

Step 5: From the results of Step 4, find the minimum interval
satisfying the restriction in Definition 1.

Finally, the result by using the minimum interval clarified
in Step 5 indicates the limit of performance.

This result is ensured that the error ratio is not more than
five percent. In other words, the throughput resulted by using
the smaller interval next to the minimum interval is at most
1.05 times larger than using the minimum interval. We can
prove it as follows:

Proof. We assume that x is the minimum interval in Step 2.
Therefore x/2 is the smaller interval next to the minimum
interval. Here the stepping width calculated in Step 3 is (x−
x/2)/20 = x/40. We denote the width as y. The error ratio
is at least x/(x − y) − 1 and at most (x/2 + y)/(x/2) − 1.
Consequently, the highest error ratio is 0.05.

V. EVALUATION

We implemented ILDM with PF and SF methods in Java,
based on the MQTT version 3.1.1 specification. We also
implemented a load testing tool by using a client library of
SurgeMQ [8] known for its high performance so that the tool
can send/receive PUBLISH messages with high frequency.

Regarding hardware environments, we prepared two types
of servers described in Table I for installing brokers and ILDM
nodes. All machines used in experiments were connected by
using a non-blocking L2 switch.

We conducted some experiments by using the benchmark
method described in Section IV. The aim of the experiments is

to confirm the feasibility of ILDM mainly from the viewpoint
of improvement of throughput, which is carried from reducing
consumption of resources with the edge-based architecture.

In each experiment, we ran the load testing tool for 80
seconds. The performance indexes stated previously were
calculated by excluding the first and last 10 seconds, i.e.,
substantial measurement time was 60 seconds. QoS level was
set to 0, and the size of payload of each PUBLISH message
was 32 bytes.

The configuration of topics and clients are as follows:
• There are five topics for measuring throughput and loss

rate: from topic1 to topic5.
• These topics have 10 publishers and 10 subscribers re-

spectively, thus the sp-ratio is 10.
• There also be topic6 with a publisher and a subscriber

for measuring latency.
• This publisher sends a PUBLISH message for each one

second.
For convenience, we denote the clients of topic1 to topic5
by t-clients, and the clients of topic6 by l-clients. In case
of multiple brokers, we used additional l-clients. We describe
about this later.

We calculated the average of ingress/egress throughput and
latency in the measurement time of 60 seconds, and found the
limit of performance by using the benchmark method.

A. Evaluation of single brokers

As preliminary experiments, we evaluated the performance
of open-source MQTT brokers alone. The aim is to get a
reference of choosing a broker in evaluation of ILDM, as
well as providing knowledge of performance characteristics
of well-known MQTT brokers.

We used the following four brokers: Mosquitto 1.4.5,
Moquette 0.8 [9], RabbitMQ 3.6.0 [10], and ActiveMQ
5.13.3 [11]. We measured the performance by changing the
types of servers, S1 and S2, on which we ran the brokers.

Figure 5(a) and 5(b) shows the results of throughput. As the
benchmark method indicates, egress throughputs are almost
equal to ingress throughputs multiplied by the sp-ratio 10.

When using type S1 server, the performance of ActiveMQ
and Mosquitto are the tops. ActiveMQ is slightly larger, but
almost even. Regarding type S2 server, Mosquitto is the largest
and its egress throughput reaches over 600, 000.

Figure 5(c) shows the result of latency. As for latency, the
shorter the better. In case of type S1 server, Mosquitto has
the shortest latency. On the other hand, using type S2 server,
every broker has approximately less than 1 millisecond latency.
ActiveMQ is the best, but the difference is quite small.

In these measurements, the loss rate was zero for all
patterns.

B. Evaluation of ILDM-based cooperation

We evaluated the performance of ILDM-based cooperation.
Although the principal feature of ILDM is the capability
of connecting heterogeneous brokers, we used one kind of
broker to clarify the performance characteristics of ILDM

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Mosquitto Moquette RabbitMQ ActiveMQ

in
g
re

ss
 t

h
ro

u
g
h
p

u
t

[m
sg

/s
ec

]

Type S₁ Type S₂

(a) Ingress throughput

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Mosquitto Moquette RabbitMQ ActiveMQ

eg
re

ss
 t

h
ro

u
g
h
p
u
t

[m
sg

/s
ec

]

Type S₁ Type S₂

(b) Egress throughput

0

5

10

15

20

Mosquitto Moquette RabbitMQ ActiveMQ

la
te

n
cy

 [
m

se
c]

Type S₁ Type S₂

(c) Latency

Fig. 5. Evaluation of single brokers.

TABLE II
PATTERNS OF MEASURMENTS

Pattern Description
A Using one broker with one ILDM node.
B Using 5 brokers with ILDM. t-clients are

placed with no locality.
C Using 5 brokers with ILDM. t-clients are

placed with high locality.
D Using 5 brokers with ILDM. t-clients are

placed with low locality.

itself. We chose Mosquitto because it indicated relatively better
performance among the four brokers in Section V-A.

Table II states the patterns of measurements. In these
patterns, pairs of a broker and an ILDM node are placed on
one or five S1 servers.

Pattern B, C, and D use 5 pairs of a broker and an ILDM
node connected in a row. Each ILDM node has the same
number of local t-clients, i.e., 20 t-clients. These patterns have

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

S₁ S₂

in
g
re

ss
 t

h
ro

u
g
h
p
u
t

[m
sg

/s
ec

]

S₁ S₂

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

A B C D

in
g
re

ss
 t

h
ro

u
g
h
p
u
t

[m
sg

/s
ec

]

PF SF

(a) Ingress throughput

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

S₁ S₂

eg
re

ss
 t

h
ro

u
g
h

p
u

t
[m

sg
/s

ec
]

S₁ S₂

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

A B C D

eg
re

ss
 t

h
ro

u
g
h

p
u

t
[m

sg
/s

ec
]

PF SF

(b) Egress throughput

0

10

20

30

40

50

60

70

80

S₁ S₂

la
te

n
cy

 [
m

se
c]

S₁ S₂

0

10

20

30

40

50

60

70

80

A B C D

la
te

n
cy

 [
m

se
c]

PF SF

(c) Latency

Fig. 6. Evaluation of ILDM-based cooperation.

a difference of locality of those 100 t-clients. The number of
t-clients placed on each ILDM node is as follows:
pattern B: two publishers and two subscribers for every five

topics.
pattern C: 10 publishers and 10 subscribers of a topic.
pattern D: Eight publishers and eight subscribers of a topic,

one publisher and one subscriber of a different
topic, one publisher and one subscriber of another
different topic.

In pattern B, C, and D, each of five ILDM nodes has a l-
client as a subscriber of topic6. Only one ILDM node placed
at the end of the list of the five ILDM nodes has one more
l-client as a publisher of topic6. Hence, five data of latency are
obtained every second in the measurement time of 60 seconds.

Figure 6(a) and 6(b) shows the results of throughput. “PF”
and “SF” in the legend denote the cooperation algorithms.
The results of single mosquitto broker are depicted again for

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

comparison, on the right side of the graphs. Same as results
in section V-A, egress throughputs are almost equal to ingress
throughputs multiplied by the sp-ratio 10.

By comparing patterns A and S1, we can see that the over-
head of using an ILDM node was suppressed to approximately
10 percent. Results of pattern B, C, and D indicate that ILDM-
based cooperation can provide better throughput compared
with using a single broker. Especially in pattern C with SF
method, the throughput overtook the case of using a single
broker on type S2 server. Since the spec of type S2 is quite
higher than type S1, this is an impressive result.

It can be said that locality of placing clients affects the
performance, by comparing patterns B, C and D. High locality
made throughput larger, especially with SF method. This is due
to the characteristic of SF method described in Section III-D.
Considering edge-heavy data, having high locality of utiliza-
tion, such tendency could be effective.

Figure 6(c) shows the result of latency. Here also the results
of single mosquitto broker are depicted again for comparison.
Basically the patterns using multiple brokers are inferior,
because a PUBLISH message is forwarded with multi-hop
until it arrives at corresponding subscribers.

Patterns A shows approximately 10 msec. Although this is
larger than S1, the result is considered not to impair the effect
of reducing latency in the edge-based architecture, since RTT
between IoT devices and data centeres could be over 100 msec
if it across different countries.

In pattern B, both cases of PF and SF seem to have the same
load of throughput. Therefore, the latency of SF method is a
little longer due to its complicated processing compared to PF
method probably. On the other hand, pattern C and D show
that latency of PF method is longer than that of SF method.
The reason for this is considered that more redundant messages
are propagated in PF method compared to SF method. Pattern
C is the case with the highest throughput, so that brokers and
ILDM nodes running with PF method tend to be busy and
take much time for handling PUBLISH messages.

In these measurements, the loss rate was zero for all
patterns.

VI. RELATED STUDY

Dynomite [12] makes existing non distributed data stores,
e.g., Redis and Memcached, into a distributed data store.
The aim is to provide high availability and resiliency on
storage engines which do not have those functionalities.
BondFlow [13] proposes a system enables encapsulated web
services to interconnect. These are similar to ILDM from the
viewpoint of modularizing functionality of interwork, while
the target is different from ILDM.

There are existing methods of topic-based pub/sub with
mesh-based topologies [14] [15], unlike that PF and SF
suppose a tree structure which does not include closed paths.
PIQT [16], which is based on PIAX [17], is one of the
implementations using such mesh-based methods. We can
obtain better characteristics like scalability and reliability by
implementing these methods in ILDM, though such methods

may occur additional overheads e.g., maintaining complex
routing tables.

As far as we know, there are no existing proposals of
connecting heterogeneous MQTT brokers.

VII. CONCLUSION

In this paper, we proposed a novel mechanism called ILDM
which enables heterogeneous MQTT brokers to cooperate with
each other. The APIs provided by ILDM enable to develop a
variety of cooperation algorithms easily. Two basic algorithms,
PF and SF, and a practical benchmark method for MQTT
brokers were also presented. The benchmark method ensures
that the error ratios of performance are no more than 5 percent.

We evaluated the feasibility of ILDM with the bench-
mark method. By connecting five brokers via ILDM, the
throughput increases approximately two to four times than
using a Mosquitto broker alone. This result indicates that
the architecture based on edge brokers is useful for reducing
consumption of cloud resources.

Our future work includes the following:
• Evaluate with practical environments, including the dif-

ference of latency between the cloud and the edge.
• Confirm characteristics of performance with combina-

tions of different kinds of brokers.
• Develop more scalable cooperation algorithms with con-

sideration for fault tolerance.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[3] A. Popov, A. Proletarsky, S. Belov, and A. Sorokin, “Fast prototyping
of the internet of things solutions with ibm bluemix,” in Hawaii
International Conference on System Sciences, 2017, pp. 1064–1072.

[4] D. Okanohara, S. Hido, N. Kubota, Y. Unno, and H. Maruyama, “Krill:
an architecture for edge heavy data,” in Third Workshop on Architectures
and Systems for Big Data, 2013.

[5] Mosquitto, “mosquitto.org (accessed 2017-05-25).”
[6] HiveMQ, “www.hivemq.com (accessed 2017-05-25).”
[7] MQTT, “mqtt.org (accessed 2017-05-25).”
[8] SurgeMQ, “github.com/influxdata/surgemq (accessed 2017-05-25).”
[9] Moquette, “github.com/andsel/moquette (accessed 2017-05-25).”

[10] RabbitMQ, “www.rabbitmq.com (accessed 2017-05-25).”
[11] ActiveMQ, “activemq.apache.org (accessed 2017-05-25).”
[12] Dynomite, “github.com/Netflix/dynomite (accessed 2017-05-25).”
[13] J. Balasooriya, M. Padhye, S. K. Prasad, and S. B. Navathe, “Bondflow:

A system for distributed coordination of workflows over web services,”
in IEEE International Parallel and Distributed Processing Symposium,
2005, pp. 121a–121a.

[14] R. Banno, S. Takeuchi, M. Takemoto, T. Kawano, T. Kambayashi, and
M. Matsuo, “Designing overlay networks for handling exhaust data in
a distributed topic-based pub/sub architecture,” Journal of Information
Processing, vol. 23, no. 2, pp. 105–116, 2015.

[15] Y. Teranishi, R. Banno, and T. Akiyama, “Scalable and locality-aware
distributed topic-based pub / sub messaging for iot,” in IEEE Global
Communications Conference, 2015, pp. 1–7.

[16] P. distributed pub/sub broker, “piqt.org (accessed 2017-05-25).”
[17] Y. Teranishi, “Piax: Toward a framework for sensor overlay network,”

in IEEE Consumer Communications and Networking Conference, 2009,
pp. 1–5.

Proc. 6th IEEE Int'l Conf. on Cloud Networking
(IEEE CloudNet 2017), pp.5-11, September 2017

