
Self-Refining Skip Graph:
Skip Graph Approaching to an Ideal Topology

Takafumi Kawaguchi, Ryohei Banno, Masashi Hojo, Masaaki Ohnishi and Kazuyuki Shudo
Tokyo Institute of Technology

Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552 Japan
Email: {kawaguchi.t.ae, banno.r.aa, hojo.m.aa, ohnishi.m.aa}@m.titech.ac.jp, shudo@is.titech.ac.jp

Abstract—In Skip Graph, a structured overlay, each node
constructs its routing table by choosing connected nodes based
on its membership vector. However, membership vectors are
determined randomly; therefore, nodes do not always form an
ideal topology. This can cause the route length to be long.
Therefore, we propose Self-Refining Skip Graph, a structured
overlay where each node refines its routing table toward an ideal
Skip Graph topology. Our proposed method has shorter route
length as approaching to an ideal topology while maintaining the
robustness derived from the mechanism of membership vectors.
Our evaluation confirms that the topology approaches to an ideal
one and that the route length becomes shorter than that in Skip
Graph.

I. INTRODUCTION

Overlay networks are virtual networks constructed on low
layer networks for applications such as Peer-to-Peer systems.
They are required to provide communication between any two
nodes with the number of message forwarding hops as small
as possible.

To fulfill this requirement, several techniques of managing
distributed data based on one-dimensional structures have been
proposed [1], [2], [3], [4], [5]. Such one-dimensional structures
have several advantages, e.g., the number of connected nodes
is relatively small and the maintenance cost of connecting to
other nodes is relatively low. Each node is typically assigned
to a one-dimensional identifier. Nodes are arranged in the
identifier space based on their identifiers. They connect not
only to their closest neighbors but also to their distant nodes
to establish shortcut links. When they choose such distant
nodes to connect, the following conditions are expected to
be considered.

• The number of message forwarding hops and the number
of connected nodes should not grow unreasonably fast as
the number of nodes increases.

• The maintenance cost of connecting to other nodes should
be low.

As shown in Fig. 1, an ideal topology is composed of
nodes that consider such conditions when they choose their
distant nodes to connect. In an ideal topology, all nodes
connect to nodes that are 2i(i = 0, 1, 2, ...) away from their
identifiers. This is because the number of rest nodes to a
target node is reduced by more than half in one hop when a
node communicates with other nodes in a multi-hop manner.
Therefore, the number of message forwarding hops and the

23

22

21

20

Fig. 1. An ideal topology.

number of connected nodes become less than log N , where
N is the number of nodes.

Chord# [6] is a structured overlay that strictly maintains an
ideal topology. Therefore, the maintenance cost of connecting
to other nodes is relatively high. In Skip Graph [7], however,
an ideal topology is not strictly maintained. Nodes establish
links to other nodes based on m-ary random digits; therefore,
they do not always form an ideal topology. Therefore, the
maintenance cost of connecting to other nodes is relatively
low; however, this can cause the number of message forward-
ing hops to be large.

Therefore, we propose Self-Refining Skip Graph, a struc-
tured overlay where each node refines its connections to
other nodes while it joins or leaves the network as in Skip
Graph. Our proposed method enables each node to construct
its connections to other nodes quickly as in Skip Graph and
enables the topology to approach to an ideal one. This means
that the maintenance cost of connecting to other nodes is
relatively low, but the number of message forwarding hops
becomes smaller than that in Skip Graph.

In this paper, Skip Graph is described in Sec. II as back-
ground for our proposed method. Self-Refining Skip Graph,
our proposed structured overlay, is described in Sec. III. The
evaluation of Self-Refining Skip Graph is described in Sec.
IV.

II. BACKGROUND

In this section, we describe Skip Graph [7] and its non-ideal
feature.

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



!"#"$%

Fig. 2. A Skip Graph topology.

!"!#$

Fig. 3. An ideal Skip Graph topology.

A. Concept of Skip Graph

Skip Graph is a structured overlay based on Skip List [8].
Each node is assigned to a key as its identifier. Nodes are
arranged in their key order in the key space. Therefore, Skip
Graph supports range queries.

Nodes are located on hierarchical lists based on their keys
and their membership vectors (MVs). An MV is a sequence
of m-ary random digits (in this paper, let m be 2). As shown
in Fig. 2, nodes establish bidirectional links to their closest
neighbors at level 0 and to their closest nodes that have i
common digits in their MVs at level i.

Each node constructs two routing tables, i.e., neighbor[R]
and neighbor[L]. Neighbor[R] is a list that contains the closest
nodes’ information from its key in ascending order at each
level. Neighbor[L] is a list that contains the closest nodes’
information from its key in descending order at each level.

Routing in Skip Graph is performed by repeatedly for-
warding a message to the closest node to a target node’s
key so that the message reaches a target node. Each node
chooses an appropriate node from the highest level in its
neighbor[L] and neighbor[R]. If the message cannot continue
its approach at a given level, the node chooses an appropriate
node from the next lower level in its neighbor[L] and neigh-
bor[R]. In Skip Graph, message reachability is guaranteed
by performing routing using neighbor[L] and neighbor[R],
including the closest neighbors. The route length, the number
of message forwarding hops, is O(log N ), where N is the
number of nodes, when performing routing using neighbor[L]

and neighbor[R]. This is because the number of rest nodes to
a target node can probability be reduced by more than half in
one hop.

When a node joins or leaves the network, it constructs its
routing table quickly and only its neighbor nodes update their
routing tables because nodes establish bidirectional links to
other nodes based on their MVs. Therefore, the maintenance
cost of routing tables is relatively low.

B. The non-ideal feature of Skip Graph
In Skip Graph, nodes do not always form an ideal topology

due to the deviations in the MVs that are determined ran-
domly. The longer the length of common digits in the MVs
between neighbor nodes, the larger the deviations in the MVs.
Therefore, the route length can relatively be long.

As shown in Fig. 3, in an ideal Skip Graph topology, it
is expected that all nodes’ neighbors at level i are the same
as their neighbors’ neighbors at level i − 1. In this way, all
nodes can connect to nodes that are 2i(i = 0, 1, 2, ...) away
from their keys. This results in efficient routing. However,
in reality, neighbor nodes have some common digits in their
MVs. Therefore, it is often the case that one node’s neighbors
at level i are the same as its neighbors at level i−1. This means
that some nodes have overlapping entries between neighbor
levels in their routing tables. Therefore, a Skip Graph topology
is not always ideal, which does not always achieve efficient
routing.

III. PROPOSED METHOD

We propose Self-Refining Skip Graph, a structured overlay
where each node refines its routing table by modifying its MV
while it constructs its routing table based on its MV as in Skip
Graph [7]. First, we describe the basic idea of Self-Refining
Skip Graph.

A. Basic idea
As described in Sec. II-B, in Skip Graph, nodes do not

always form an ideal topology due to the deviations in the
MVs. Therefore, we propose a method where each node
detects and modifies the deviations in the MVs so that the
topology approaches to an ideal one.

The modification of MVs is achieved by inverting one digit
in MVs. The nodes that need to modify their own MVs are
the even-numbered nodes in an MV deviation node sequence.
As shown in Fig. 4, an MV deviation node sequence at level i
is a sequence that consists of nodes that have an i-th common
digit and an (i− 1)-th common digit in their MVs, i.e., nodes
whose neighbors at level i are the same as their neighbors
at level i − 1. If the even-numbered nodes in the sequence
invert the i-th digit in their MVs, in all neighbor nodes in
the sequence, the i-th digit will be different in their MVs, and
their neighbors at level i will be different from their neighbors
at level i−1. In this way, if we remove the MV deviation node
sequence, the topology approaches to an ideal one.

When each node performs such a modification of its MV
once, the property of an ideal Skip Graph topology where all

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



!"#"$%

21

21

21

21

Fig. 4. An MV deviation node sequence in Skip Graph.

!"!#$

21

22

21

Fig. 5. The removal of an MV deviation node sequence.

nodes’ neighbors at level i are the same as their neighbors’
neighbors at level i−1 is partially realized, which the topology
approaches to an ideal one. If each node performs this mod-
ification multiple times, the property of an ideal Skip Graph
topology is completely realized, and the resulting topology is
ideal.

For example, in Fig. 4, there is an MV deviation node
sequence at level 2 that consists of key:13, key:33, and key:75.
These nodes have two common digits in their MVs, namely,
00; therefore, key:13 connects to key:33 at levels 1 and 2,
key:33 connects to key:13 and key:75 at levels 1 and 2, and
key:75 connects to key:33 at levels 1 and 2. This MV deviation
node sequence consists of three nodes; therefore, only the
second node, key:33, is the even-numbered node. Therefore,
key:33 inverts the 2nd digit in its MV. As shown in Fig. 5, in
all neighbor nodes in the sequence, i.e., in key:13 and key:33,
and key:33 and key:75, the 2nd digit is different in their MVs;
therefore, key:13 connects to key:75 at level 2 and to key:33
at level 1, key:33 connects to key:99 at level 2 and to key:13
and key:75 at level 1, and key:75 connects to key:13 at level
2 and to key:33 at level 1. Therefore, we could remove an MV
deviation node sequence.

B. Concept of Self-Refining Skip Graph
The methods of assigning keys to nodes and of constructing

routing tables are the same as those in Skip Graph. This keeps
the maintenance cost of routing tables as low as that in Skip

Graph. The method of assigning MVs to nodes is also the same
as that in Skip Graph. If nodes are assigned to their MVs not
by generating m-ary random digits but by calculating for an
ideal topology, the route length can be less than log N , where
N is the number of nodes. In this case, however, all nodes
are forced to modify their MVs and to update their routing
tables toward an ideal topology every time a node joins or
leaves the network; therefore, the maintenance cost of routing
tables becomes higher than that in Skip Graph. Therefore, each
node refines its routing table by modifying its MV after it is
assigned to its MV by generating m-ary random digits.

After each node joins the network by using the same method
in Skip Graph, it executes the MV modification protocol, an
algorithm where a node autonomously refines its routing table
by modifying its MV, at regular intervals. In the following
sections, we describe the details of the MV modification
protocol.

Executing the MV modification protocol results in the
number of overlapping entries between neighbor levels in the
routing tables decreasing, and the property of an ideal Skip
Graph topology where all nodes’ neighbors at level i are the
same as their neighbors’ neighbors at level i− 1 is gradually
realized. If each node continues executing the MV modification
protocol for a long time, the property of an ideal Skip Graph
topology is completely realized. However, this is not our goal.
Our goal is to keep the maintenance cost of routing tables
as low as that in Skip Graph while improving the routing
efficiency by performing normal routing as each node refines
its routing table. Therefore, we can perform normal routing
without waiting to reach an ideal topology.

C. The MV modification protocol
In the MV modification protocol, a node detects and modi-

fies the deviations in the MVs, and updates its routing table.
Each node autonomously refines its routing table; therefore,
decreasing the number of overlapping entries between neigh-
bor levels in one node’s routing table may cause an increase
in the number of overlapping entries in other nodes’routing
tables. However, this is not a problem because the modification
of MVs does not oscillate. This is because the topology is not
a ring but a list and messages for detecting and modifying
the deviations in the MVs must be sent in the direction of
ascending order.

1) Detecting and modifying the deviations in MVs: First,
a node examines whether its own MV causes the deviations
in the MVs. In other words, a node examines whether it is
contained in an MV deviation node sequence by examining
whether its neighbor nodes between any neighbor levels in its
routing table are the same.

Next, if a node is contained in an MV deviation node
sequence, it decides whether it should modify its own MV by
cooperating with its neighbor nodes. From Sec. III-A, if a node
knows whether it is the even-numbered node in the sequence,
it can decide whether it should modify its own MV. However,
all nodes except the first one in the sequence do not know
their location in the sequence; therefore, they have to learn

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



sg

st nd 

!"#"$%

Fig. 6. Sending an MV deviation detection message.

their location by receiving an MV deviation detection message
sent by the first node. An MV deviation detection message
is a message containing the number of forwarding hops. The
nodes that receive this message can learn their location in
the sequence by examining how many times the message is
forwarded from the first node. Therefore, the first node sends
an MV deviation detection message to the closest node in
the MV deviation node sequence. A node that receives this
message learns its location in the sequence from the number
of message forwarding hops, and if it is the even-numbered
node in the sequence, it decides to modify its own MV.

Finally, if a node decides to modify its own MV, it inverts
the one appropriate digit in its own MV.

In Self-Refining Skip Graph, therefore, each node has the
following function to execute the MV modification protocol.

1) When a node receives an MV deviation detection mes-
sage, it learns its location in the MV deviation node
sequence from the number of message forwarding hops.
－ If it is the even-numbered node in the sequence, it

modifies its own MV.
2) The node forwards the message to the closest node in the

MV deviation node sequence. If there is no next closest
node, it deletes the message.

Under these circumstances, the modification of MVs is
achieved by executing the following MV modification protocol
at regular intervals and sending an MV deviation detection
message as shown in Fig. 6.

1) A node examines whether it is contained in an MV
deviation node sequence.

2) If the node is contained in an MV deviation node
sequence and is the first node in the sequence, it sends
an MV deviation detection message to the closest node
in the sequence.

For example, in Fig. 6, key:13 is contained in an MV
deviation node sequence and is the first node in the sequence;
therefore, it sends an MV deviation detection message to the
closest node in the sequence, i.e., key:33. Then, key:33 re-
ceives the MV deviation detection message, learns its location
in the sequence, and forwards the message to the closest node
in the sequence, i.e., key:75. Key:33 also modifies its own

MV because it is the even-numbered node in the sequence.
Then, key:75 learns its location in the sequence and deletes the
message because there is no next closest node in the sequence.

If a node is contained in the MV deviation node sequence at
multiple levels, the decision to send an MV deviation detection
message is performed at the lowest level. As described in
Sec. III-C2, if a node inverts the i-th digit in its MV, it
needs to update the entries of more than level i in its routing
table. We describe an example where a node is contained in
the MV deviation node sequence at levels i and j (i < j).
First, if a node inverts the j-th digit in its MV, it updates
the entries of more than level j in its routing table. Next, it
inverts the i-th digit in its MV and updates the entries of more
than level i, including the entries of more than level j, in its
routing table. However, this is a wastage because the entries
of more than level j have just been updated. To remove such
a wasteful operation, the decision to send an MV deviation
detection message is always performed in the MV deviation
node sequence at the lowest level. In this way, updating the
routing tables is performed from the lowest level.

For example, in Fig. 6, key:75 is contained in the MV devia-
tion node sequence at level 2, which consists of key:13, key:33,
and key:75, and at level 1, which consists of key:75 and
key:99. Under these circumstances, the decision of whether
key:75 sends an MV deviation detection message is performed
in the MV deviation node sequence not at level 2 but at level
1.

2) Updating routing tables: In Self-Refining Skip Graph,
each node constructs its routing table based on its MV when it
joins the network. Therefore, if a node modifies its MV after
it joins the network, several nodes will need to update their
routing tables based on the node’s new MV. This operation is
nearly the same as the operation where a node that modified
its MV leaves and joins the network.

We describe an operation in which when one node, A,
inverts the i-th digit in its MV, several nodes update their
routing tables based on node A’s new MV. This operation
consists of two phases; updating the routing tables of the nodes
that contain node A in their routing tables and updating the
routing table of node A.

First, we describe how to update the routing tables of the
nodes that contain node A in their routing tables. The nodes
that need to update their routing tables in the nodes that contain
node A in their routing tables are the nodes that are contained
in more than level i in node A’s routing table. Therefore,
node A sends an MV notification message to them. An MV
notification message is a message to notify other nodes of
node A’s new MV. The nodes that receive this message can
update their routing tables based on node A’s new MV.

In Self-Refining Skip Graph, therefore, each node has the
following function to update its routing table when other nodes
modify their MVs.

1) When a node receives an MV notification message, it
updates the entries of the message source node in its
routing table based on the new MV.

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



!"#"$%

sg

sgsg

Fig. 7. Sending an MV notification message.

!"#"$%

sg sg

Fig. 8. Progress of updating the routing tables.

Under these circumstances, updating the routing tables of
the nodes that contain node A in their routing tables is
achieved by performing the following operation and sending
an MV notification message as shown in Fig. 7.

1) Node A sends an MV notification message to the nodes
that are contained in more than level i in its routing
table.

For example, in Fig. 7, key:33 sends an MV notification
message to the nodes that are contained in more than level 2
in its routing table, i.e., key:13 and key:75, because it inverts
the 2nd digit in its MV. As shown in Fig. 8, key:13 and key:75
receive the MV notification message; therefore, they update the
entries of key:33 based on the new MV.

Next, we describe how to update the routing table of node
A. The entries that need to be updated in node A’s routing
table are the entries of more than level i. Therefore, node A
updates these entries in its routing table based on its new MV.
In this way, updating the routing table of node A is achieved.

For example, in Fig. 8, key:33 updates the entries of
more than level 2 in its routing table based on its new MV.
Therefore, as shown in Fig. 5, we could remove an MV
deviation node sequence.

IV. EVALUATION

We implemented Self-Refining Skip Graph on Overlay
Weaver [9] [10], an overlay construction toolkit, and per-

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

!" '!" #!!" #'!" $!!" $'!" %!!" %'!" &!!" &'!" '!!"

)*
+,
-".
/0

12
3"*

4"*
52
3-,

66
7.
8"
2.

+3
72
9

:/0123"*4";<"0*=7>?,@*."63*+*?*-"?A?-29!

Fig. 9. Behavior confirmation (N = 1000).

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!"

(!!!!"

)!!!!"

!" '!!" #!!!" #'!!" $!!!" $'!!" %!!!" %'!!" &!!!" &'!!" '!!!"

*+
,-
."/
01

23
4"+

5"+
63
4.-

77
8/
9"
3/

,4
83
:!

;01234"+5"<="1+>8?@-A+/"74+,+@+."@B@.3:""""

Fig. 10. Behavior confirmation (N = 10000).

formed experiments. The experimental environment is as
shown in TABLE I.

In these experiments, we set the number of nodes to N =
1000 and 10000. Then, we measured the route length when
all nodes sent messages to other nodes after executing T MV
modification protocol cycles. We define an MV modification
protocol cycle as a period when all nodes autonomously
execute the MV modification protocol once and completely
update their routing tables. T = 0 indicates that no nodes have
modified the deviations in the MVs; therefore, its performance
is the same as that of Skip Graph [7]. In other words, the result
of T = 0 is the same as that of Skip Graph.

A. Behavior confirmation of the MV modification protocol

As described in Sec. II-B, in Skip Graph, some nodes have
overlapping entries between neighbor levels in their routing

TABLE I
EXPERIMENTAL ENVIRONMENT.

Simulator Overlay Weaver 0.10.4
OS Mac OS X 10.10.3
CPU Intel Core i7-5557U 3.1GHz
Memory 16GB
Java Java SE 8 Update 45

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



tables. As described in Sec. III-B, executing the MV modifi-
cation protocol results in the number of overlapping entries
between neighbor levels in the routing tables decreasing.

To confirm this, we counted the total number of overlapping
entries between neighbor levels in all nodes’ routing tables
every time when executing an MV modification protocol cycle.
For example, when the entries of levels 0, 1, and 2 in one
node’s routing table are the same, we can find the overlapping
entries between levels 0 and 1, and between levels 1 and 2.
Therefore, the number of overlapping entries in this node’s
routing table is 2. The total number of overlapping entries
becoming 0 infers that the topology reaches an ideal one.

As shown in Figs. 9 and 10, we found that the total number
of overlapping entries decreased as the number of MV mod-
ification protocol cycles increased. In the case of N = 1000,
when we executed 500 MV modification protocol cycles, the
total number of overlapping entries became 0. In the case of
N = 10000, when we executed 5014 MV modification protocol
cycles, the total number of overlapping entries became 0.
Therefore, we confirmed that the MV modification protocol
behaved as we intended.

B. Relationship between the MV modification protocol cycles
and the route length

We measured the route length after executing 0, 5, and N /
2 MV modification protocol cycles and calculated the average
and maximum route lengths. These results include the result of
0 MV modification protocol cycles; therefore, we can compare
the performance of Self-Refining Skip Graph with that of Skip
Graph.

As shown in Figs. 11 － 16, we found that the route
length decreased overall as the number of MV modification
protocol cycles increased. As shown in TABLEs II and III, the
average route length decreased. The maximum route length
also decreased, which shows that executing the MV modifi-
cation protocol improves the problem where the maximum
route length is often long in Skip Graph. Compared to the
result of T = 0, i.e., the result of Skip Graph, we found
that the proposed method, where each node executes the MV
modification protocol, provided more efficient routing.

TABLE II
AVERAGE AND MAXIMUM ROUTE LENGTHS (N = 1000).

MV modification protocol cycles 0 5 500
Average route length 8.34 6.58 4.48

Maximum route length 30 25 9

TABLE III
AVERAGE AND MAXIMUM ROUTE LENGTHS (N = 10000).

MV modification protocol cycles 0 5 5014
Average route length 11.40 9.99 6.14

Maximum route length 47 37 13

!"

#"

$!"

$#"

%!"

%#"

&!"

$" &" #" '" (" $$" $&" $#" $'" $(" %$" %&" %#" %'" %("

)*
+,

-+
./
0"
12

3!

45-6+"7+.869

Fig. 11. Route length (N = 1000, T = 0).

!"

#"

$!"

$#"

%!"

%#"

&!"

$" &" #" '" (" $$" $&" $#" $'" $(" %$" %&" %#" %'" %("
)*
+,

-+
./
0"
12

3!
45-6+"7+.869!

Fig. 12. Route length (N = 1000, T = 5).

!"

#"

$!"

$#"

%!"

%#"

&!"

$" &" #" '" (" $$" $&" $#" $'" $(" %$" %&" %#" %'" %("

)*
+,

-+
./
0"
12

3!

45-6+"7+.869!

Fig. 13. Route length (N = 1000, T = 500).

C. Approaching to an ideal topology

We measured the route length every time when executing
an MV modification protocol cycle and calculated the average
route length. The process of a decrease in the average route
length illustrates how a topology approaches an ideal one.

As shown in Figs. 17 and 18, we found that the average
route length decreased nearly linearly as the number of MV
modification protocol cycles increased. In the case of N =
1000, when the number of MV modification protocol cycles
was 0, the average route length was 8.34. As we executed
several MV modification protocol cycles, the average route
length dramatically decreased from 8.34 to 7.81, 7.28, 6.99,
6.84, 6.58, and so on. In the case of N = 10000, when
the number of MV modification protocol cycles was 0, the

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



!"

#"

$!"

$#"

%!"

%#"

&!"

$" &" #" '" (" $$"$&"$#"$'"$("%$"%&"%#"%'"%("&$"&&"&#"&'"&(")$")&")#")'"

*+
,-

.,
/0
1"
23

4!

56.7,"8,/97:!

Fig. 14. Route length (N = 10000, T = 0).

!"

#"

$!"

$#"

%!"

%#"

&!"

$" &" #" '" (" $$"$&"$#"$'"$("%$"%&"%#"%'"%("&$"&&"&#"&'"&(")$")&")#")'"

*+
,-

.,
/0
1"
23

4!

56.7,"8,/97:!

Fig. 15. Route length (N = 10000, T = 5).

!"

#"

$!"

$#"

%!"

%#"

&!"

$" &" #" '" (" $$"$&"$#"$'"$("%$"%&"%#"%'"%("&$"&&"&#"&'"&(")$")&")#")'"

*+
,-

.,
/0
1"
23

4!

56.7,"8,/97:!

Fig. 16. Route length (N = 10000, T = 5014).

average route length was 11.40. As we executed several
MV modification protocol cycles, the average route length
dramatically decreased from 11.40 to 10.85, 10.48, 10.21,
10.04, 9.99, and so on. These illustrate that the topology
dramatically approaches to an ideal one after we execute
several MV modification protocol cycles.

When we continued executing the MV modification proto-
col, the average route length continued to decrease. In the case
of N = 1000, when we executed 500 MV modification protocol
cycles, the average route length converged to 4.48, which the
topology reached an ideal one. In the case of N = 10000,
when we executed 5014 MV modification protocol cycles,
the average route length converged to 6.14. Therefore, the
number of MV modification protocol cycles when the average

!"

#"

$"

%"

&"

'"

("

)" $)" *))" *$)" +))" +$)" !))" !$)" #))" #$)" $))"

,-
./
0-
".1

23
-"
4-
50
36
!

7289-."1:";<"81=>?@/A15"B.131@14"@C@4-D"""!

Fig. 17. Approaching to an ideal topology (N = 1000).

!"

#"

$"

%"

&"

'("

''"

')"

(" !((" '(((" '!((" )(((" )!((" *(((" *!((" +(((" +!((" !((("

,-
./
01
."
/2
34
."
5.
61
47
!

839:./"2;"<="92>?@A0B26"C/242A25"ADA5.E""""

Fig. 18. Approaching to an ideal topology (N = 10000).

route length converges is nearly half of the number of nodes.
Experimentally, we found that the number of MV modification
protocol cycles when the average route length converges is
proportional to the number of nodes. However, this does not
affect the performance of Self-Refining Skip Graph because it
is not our goal to reach an ideal topology.

These experiments emphasize that the topology dramatically
approaches to an ideal one after we execute several MV
modification protocol cycles in the Skip Graph topology. This
means that the route length becomes shorter than that in Skip
Graph as long as we continue executing the MV modification
protocol even if nodes join or leave the network frequently.
This is a practical result.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed Self-Refining Skip Graph, a
structured overlay where each node refines its routing table
toward an ideal Skip Graph topology. Our proposed method
has shorter route length as approaching to an ideal topology
while maintaining the robustness derived from the mechanism
of MVs. Structured overlays where nodes are arranged in their
key order are often applied to range queries. Our proposal
enables range queries to be performed with the maintenance
cost of routing tables as low as that in Skip Graph while
improving the routing efficiency.

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017



Our evaluation confirmed that the topology dramatically
approaches to an ideal one after we execute several MV
modification protocol cycles even if each node constructs its
routing table based on its MV as in Skip Graph. Therefore,
the route length becomes shorter than that in Skip Graph as
long as we continue executing the MV modification protocol
even if nodes join or leave the network frequently.

Future work includes theoretical evaluations of the message
forwarding cost in the MV modification protocol and the time
taken for the topology to reach an ideal one. We will also
optimize the MV modification protocol to keep the message
forwarding cost low and to improve the decreasing rate of
route length per an MV modification protocol cycle.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
bers 25700008, 26540161, and 16K12406.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications. Networking, IEEE/ACM Transactions
on, 11(1):17–32, 2003.

[2] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Pro-
ceedings of IFTP/ACM Middleware 2001, pages 329–350, 2001.

[3] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems, pages 53–65, 2002.

[4] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-Optimal
Distributed Hash Table. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems, pages 98–107, 2003.

[5] A.R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. ACM SIGCOMM Computer
Communication Review, 34(4):353–366, 2004.

[6] T. Schutt, F. Schintke, and A. Reinefeld. Range Queries on Structured
Overlay Networks. Computer Communications, 31(2):280–291, 2008.

[7] J. Aspnes and G. Shah. Skip Graphs. ACM Transactions on Algorithms,
3(4):Article 37, 2007.

[8] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Communications of the ACM, 33(6):668–676, 1990.

[9] K. Shudo. Overlay Weaver. http://overlayweaver.sourcegorge. net, 2006.
[10] K. Shudo, Y. Tanaka, and S. Sekiguchi. Overlay Weaver: An Overlay

Construction Toolkit. Computer Communications, 31(2):402–412, 2008.

Proc. 14th IEEE Consumer Communications & Networking Conference 
(IEEE CCNC 2017), pp.441-448, January 2017




