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Abstract—Development of a decent parallel simulator is chal-
lenging work. It should achieve enough performance, scalability
and fault tolerance. Our proposal is utilizing general-purpose
data processing engines such as MapReduce implementations for
parallel simulation. Widely used and mature engines take away a
large part of the development effort and support scalability and
fault tolerance. We demonstrate that a parallel discrete-event
simulator can be implemented on such engines, Apache Hadoop
and Apache Spark, by modeling message passing of distributed
systems on MapReduce key-value processing model. Implemented
simulators could handle 10% nodes with 10 computers. Prelimi-
nary evaluation showed that our Spark-based simulator is about
20 times as fast as an existing simulator thanks to Time Warp.

Index Terms—parallel discrete-event simulation, Time Warp,
peer-to-peer, data processing engine, MapReduce

I. INTRODUCTION

Parallel simulation with multiple computers enables large-
scale and possibly fast simulation beyond a single computer.
There have been number of efforts to develop parallel sim-
ulators and they have achieved a certain amount of success
in each application area. Development of a decent parallel
simulator is challenging work. Desirable properties of such a
parallel simulator include enough performance, scalability and
fault tolerance. Scalability is rather easy to achieve, but it is
not easy to achieve enough performance comparable even with
a single computer and existing parallel simulators are hardly
fault-tolerant. Furthermore, each parallel simulator duplicates
development effort to achieve those desirable properties.

Our proposal is utilizing general-purpose data processing
engines such as MapReduce implementations for parallel sim-
ulation. They can drive thousands of computers and provide
fault-tolerance features. We can leave a large part of difficulties
of the development caused by distributed nature to those
engines. In addition, well-known engines are expected to be
mature as software because they are used worldwide not only
for simulation purposes.

We demonstrate that such simulator construction is possible
by our implementation. Our discrete-event simulators run on
data processing engines, Apache Hadoop [1] and Apache
Spark [2], that support MapReduce [3] programming and
processing model. The simulators implement message pass-
ing between nodes in distributed systems, that we modeled
on key-value processing model of MapReduce. Experiments
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Fig. 1. A simulator architecture utilizing data processing engines.

confirm that the simulators process a communication-intensive
distributed system, Gnutella [4], that performs flooding of
a search message over nodes. The simulators could handle
108 nodes with 10 computers though they are not optimistic
simulation.

Optimistic simulation with Time Warp [5] requires a larger
amount of memory or storage to preserve simulation events
and anti-messages than non-optimistic methods. Suppression
of memory and storage consumption improves scalability
of simulation targets. It should be especially effective for
memory-based data processing engines such as Spark. Two
techniques, Moving Time Window (MTW) [6] and Adaptive
Time Warp (ATW) [7] could reduce the number of messages
that reside on memory at the same time in return for an
increase of simulation time.

Optimistic simulation contributed performance of our simu-
lators. Our Spark-based simulator achieved high performance
that is about 20 times of an existing simulator though the
evaluation was very preliminary.

This paper is organized as follows. Section II reviews the
present situation of parallel simulators. Section III describes
our proposal and confirms its feasibility based on implemen-
tation and experiments. Section IV introduces Time Warp,
an optimistic synchronization protocol into our simulators
and reports experimental results with the message number
reduction techniques.

II. RELATED WORK

There have been number of parallel simulators developed
for their own simulation targets. In most cases communica-
tion between computers or CPU cores is accomplished by a
simulator itself using shared memory, BSD socket API or a
message passing library such as MPIL. Overlay Weaver [8],
[9] and dPeerSim [10] are peer-to-peer protocol simulators,
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that support BSD socket-based distributed execution. Overlay
Weaver is a real-time simulator, that can also work as a
discrete-event simulator in non-parallel execution. dPeerSim
is a discrete-event simulator, that implements Null Message
algorithm [11], a non-optimistic synchronizaiton protocol. ns-
3 [12] is a discrete-event network simulator, that can run on
multiple computers communicating with MPIL. It implements
non-optimistic synchronization protocols with MPI collective
operations and the Null Message algorithm. dSUMO [13] is
a distributed version of SUMO [14], a traffic simulator. It is
based on BSD socket API. Above-mentioned simulators are
not fault-tolerant and, in the first place, there are few parallel
simulators that are tolerant of computer failures. There are
MPI implementations supporting fault-tolerance techniques.
For example, Open MPI [15] supports checkpoint and restart.
But it is still an open problem to investigate how much a fault-
tolerant MPI contributes to a fault-tolerant parallel simulator.
A fault-tolerant MPI alone cannot make a parallel simulator
fault-tolerant of computer failures. One of the reasons is that
not all the states of a simulator are managed by MPIL. A
simulator may store the states on storage, not only on memory,
and the checkpoint tecnique does not save them.

Parallel programming languages support development of a
parallel simulator. XAXIS [16] is a multi-agent simulation
middleware written in X10 [17], a parallel programming
language. Megaffic [18] is a traffic simulation model on
XAXIS. Their synchronization protocol is time-step-based as
well as other traffic simulators such as SUMO. Simulator
developers receive benefit from such a language and runtimes.
They can utilize higher-level abstractions such as PGAS for
parallel execution instead of low-level communication APIs.
An implemented simulator runs on multiple runtimes including
shared memory and MPI, that X10 supports. This approach is
promising and different from our approach as follows. Perfor-
mance and efficiency of parallel execution mainly depend on
simulator developers while they depend on a data processing
engine in our approach. Pros and cons of this approach are
possibility of high-performance and difficulty in achieving
high-performance. Fault-tolerance is another problem. This
approach does not generally provide it due to difficulty of
taking a snapshot of running programs though there have
been attempts [19]. In contrast, our approach benefits from
fault-tolerance features of a data processing engine. On a data
processing engine, a state of a simulation target is always
data and an engine reexecutes part of the simulation lost by a
computer failure.

There have been attempts to run simulation on a data
processing engine and even model a simulation target on
MapReduce programming and processing model [20], [21],
[22], [23]. Our contribution that differentiates our work from
them include parallel discrete-event simulation and optimistic
synchronization required to achieve high performance.

In our previous work [24], optimistic parallel simulation of
peer-to-peer systems succeeded. Time Warp enabled optimistic
parallel discrete-event simulation. In the work we developed
a simulator from scratch in C++ language and MPL. It is not
based on a data processing engine.
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Fig. 2. Programming and processing model of MapReduce.
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Fig. 3. A model of peer-to-peer systems on MapReduce model.
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Fig. 4. A model of wireless networks on MapReduce model.

III. PARALLEL SIMULATION ON DATA PROCESSING
ENGINES

The left part of Figure 1 is an architecture of a simulator
utilizing data processing engines. A simulator is hosted by a
data processing engine, and processes a simulation target.

The right part of Figure 1 shows the structure of our imple-
mentation of the architecture. We implemented two simulators
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and each of the two runs on Apache Hadoop [1] and Apache
Spark [2]. Our approach does not depend on a specific data
processing engine. We demonstrate it by the two separated
implementations. Hadoop is a software suite that implements
Google’s infrastructure for storing and processing a large
amount of data. It includes Hadoop MapReduce as its primary
data processing engine. Spark is another data processing
engine developed to be faster than Hadoop MapReduce. One
of the reasons we chose them is their results in scalability.
Hadoop could drive a computer cluster with 4500 computers
[25]. Spark has been successfully launched on a cluster with
more then 4000 cores [26]. Another reason is their fault
tolerance feature. Both of them reexecute a failed task on
another computer. Note that a task is part of a data processing
job and each task is assigned to a computer.

The programming and processing model of Hadoop MapRe-
duce is MapReduce [3]. Spark also supports the model. It
is necessary for a simulation target to be represented in a
model that a data processing engine supports. Otherwise the
simulation target cannot be processed in parallel. In our case
a simulation target has to be represented in the MapReduce
model though investigating a better model is part of future
work.

Figure 2 depicts the MapReduce model. It does not assume
computers, that called worker, have shared memory. A data
item is a key-value pair. In map phase, a user-supplied map
function generates key-value pairs from input data. Shuffle
phase collects key-value pairs with the same key onto the same
worker. The shuffle phase involves communication between
workers in general. In reduce phase, a user-supplied reduce
function processes the collected key-value pairs to generate
output data. An iteration that consists of the three phases can
repeat.

Our primary simulation target is distributed systems, es-
pecially peer-to-peer systems because the motivation of this
research is difficulty in development of a parallel simulator
for peer-to-peer systems [8], [9]. In a peer-to-peer system, a
large number of nodes communicate each other by sending
and receiving messages. A certain part of distributed systems
are just alike. We could model peer-to-peer systems on the
MapReduce model and Figure 3 shows the designed peer-
to-peer model. A node and a message are represented by a
key-value pair whose key is a node identifier (ID). A node
ID can be concrete such as an IP address or abstract such as
a number on a structured overlay network. Value part of a
key-value pair is node information or a message body. Shuffle
phase “delivers” a message to a node by this design. In case
that a message key-value pair and a node key-value pair have
the same node ID as its key, they are collected onto the
same worker and the worker processes message reception by
the node. Communication latency and error on a simulation
target are simulated in a sending or receiving process based
on network environment information that is shared by all the
workers. A sending node embed send time into value part of a
message, or calculates receive time and embed it. A receiving
node adopts the embedded receive time, or calculates receive
time based on the embedded send time.

Peer-to-peer systems are not the only simulation target that

TABLE I
EXPERIMENTAL SETUP.

OS  Ubuntu 14.04.2 LTS
with Linux 3.16.0

CPU  2.40 GHz Xeon E5620 x 2
Network  Gigabit Ethernet
Apache Hadoop  2.7.1
Apache Spark  1.4.1
Scala  2.11.6
Java Virtual Machine  Java SE 8 Update 45
yarn.nodemanager 30000
.resource. memoryfmb
TABLE II
HADOOP MAPREDUCE PARAMETERS.
mapreduce.map.memory .mb 2048
mapreduce.map. java.opts -Xmx1500
mapreduce.reduce.memory.mb 3072
mapreduce.reduce. java.opts -Xmx2500

TABLE III
SPARK PARAMETERS.

spark.executor.instances 19
spark.executor.memory 12G
spark.executor.cores 4
spark.driver.memory 5G
org.apache.spark

spark.serializer .serializer
.JavaSerializer
spark.shuffle.manager sort

spark.task.cpus 1

the MapReduce model can support. Figure 4 shows a model of
wireless networks on the MapReduce model. A two- or three-
dimensional Euclidean space is divided into partitions and the
partitions have their IDs. Note that it is not necessary for a
partition to be a square and elaborated partitioning leads to
good load balance. Key part of a key-value pair is a partition
ID for message delivery. Value part is node information or a
message. A sending node calculates which partitions possibly
receive the message and generates message key-value pairs for
the partitions. In shuffle phase, a node and messages to the
partition where the node resides are collected onto the same
worker. The worker processes message reception. Car traffic
and pedestrian traffic can also be modeled in this manner.

A simulation requires a simulation scenario. It describes
events including node joins, leaves and query issues in case
of peer-to-peer simulation. Our simulators convert a scenario
into key-value pairs representing those events in advance.

We selected discrete-event simulation to implement while
time-step-based simulation can run on the MapReduce model.
Discrete-event simulation enables precise handling of simu-
lated time but its performance was our concern. There is
possibility that it processes very limited number of events
such as message reception in an iteration of MapReduce even
with bounded lag technique [27]. But we expected that an
optimistic synchronization protocol would increase the number
and the performance. It worked as we expected and contributed
performance of our simulators as shown in Section I'V-C.
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A. Comparison among data processing engines

Our simulators have their own implementations of the peer-
to-peer model, in which a large number of nodes communi-
cating each other. On top of the peer-to-peer model we im-
plemented Gnutella [4], a peer-to-peer system, as a simulation
target to evaluate feasibility, scalability and performance of
our approach. Gnutella is a query flooding-based protocol. In
a Gnutella network a node issues a query to search target
objects such as a movie content and a query is flooded over
the network with the maximum number of hops, that is 7 in
default.

All the experiments in this paper are conducted on a
YARN cluster with one master computer running YARN’s
ResourceManager and 10 worker computers running YARN’s
NodeManager. All the 11 computers have the same setup
shown in Table I. Table IT and III show parameters for Hadoop
MapReduce and Spark.

We measured execution time of Gnutella simulation with
three network topologies as follows.

o Two-dimensional mesh
o Complex network generated by BA model where m =1
o Complex network generated by BA model where m = 2

These three have different degree distributions. A two-
dimensional mesh (2D mesh network) represents a Gnutella
network in which almost all the nodes have connections to 4
neighbor nodes. This topology corresponds to the early days
of Gnutella network, where the average number of neighbors
is 3.4 [28]. In a real Gnutella network a part of nodes have
an Internet access with higher bandwidth and they establish
a larger number of connections to other nodes. Complex
networks generated by Barabdasi-Albert model (BA network)
[29] are scale-free and they represent such Gnutella networks.

In this section, in 2D mesh networks 20% of nodes issue
a query each. In BA networks 100 queries are issued. The
source node of a query is randomly chosen and the search
target is another node randomly chosen. In all the following
experiments there is one target object on a entire Gnutella
network. The maximum number of hops (TTL) is 7, that is
the default number of Gnutella protocol.

Figure 5, 6 and 7 show execution time of Gnutella simu-
lation with 2D mesh, BA network (m = 1) and BA network
(m = 2). In these experiments we did not adopt Time Warp
[5], an optimistic synchronization protocol while Section IV
premises it. Non-optimistic simulation can process a very lim-
ited number of message reception events at a time because it
can process only the earliest events and a little more even with
bounded lag technique [27]. In the worst case just one message
reception is processed in an iteration of MapReduce over an
entire data processing engine. But in these experiments it is
not the case because communication patterns are simplified
as follows. All the latest message reception events happen
simultaneously and they are processed in an iteration because
all the queries are issued simultaneously and the simulated
communication latency is constant. More realistic simulation
with precise time management requires optimistic simulation
to process enough number of events in parallel.
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Spark showed better performance than Hadoop MapReduce
in all the experiments as it is designed to be. The minimum
execution times of Spark and Hadoop MapReduce are about
90 second and more than 800 second as shown in Figure 6.
The overhead of Hadoop MapReduce is certainly due to heavy
processes between iterations, that include write-out and read-
in on a distributed filesystem, and reinvocation of Java Virtual
Machines. Spark removed them. Increase of execution time
along scale of a simulated network is also larger with Hadoop
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Fig. 8. Execution time of simulation of Gnutalla with a hundred million (108)
nodes on 10 computers.

MapReduce than Spark.

Our approach benefits from improvement of data processing
engines from Hadoop MapReduce to Spark as the experi-
ments showed. More efficient and fast engines bring about
further performance improvement. Spark for The Machine
(SparkdTM) [30] is an example of such coming engines. It
achieved from 3.8 to 5.8 times performance of the original
Spark in basic operations by utilizing a shared memory pool.
It is possible for simulators developed from scratch to achieve
higher performance than our approach. But such a simulator
requires a large amount of development work and it is more
difficult to be mature as software due to a limited number of
users compared with the data processing engines.

B. Scalability evaluation

We confirmed that our simulators could process a hundred
million (10%) nodes with 10 computers. The network topology
is BA network (m = 2). Figure 8 shows the execution times.
The number of nodes 10% is enough to simulate today’s
running peer-to-peer systems. The largest one of them has
a little less than 107 nodes [31], [32] to the best of our
knowledge. Our target is the magnitude of 10'° because it
is the number of Internet-connected things in near future [33].
It is still our challenge but realistic because a data processing
engine could run on thousands of computers [25].

dPeerSim could simulate 5.75 x 10 nodes on a computer
with 1.5 GB of memory and 84 x 10° nodes on 16 computers
[10]. Our number 10® nodes on 10 computers is comparable
with it though dPeerSim simulated Chord, not Gnutella.

IV. OTIMISTIC PARALLEL SIMULATION

Most data processing engines adapt bulk-synchronous par-
allel (BSP) [34] or its more-restricted subset such as MapRe-
duce as its processing model. In our models of simulation
targets, a simulated communication between nodes, agents or
partitions requires a real communication between workers. In
BSP or its subset, inter-worker communication happens only
synchronously as shuffle phase of MapReduce.

Without an optimistic synchronization protocol, a BSP-
based data processing engine can process only the earliest
events on a synchronization. In the worst case, an iteration
of MapReduce processes only one message reception event
over an entire engine with number of workers. Bounded
lag technique [27] increases the number of events per a
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Fig. 9. Execution time and maximum number of messages with MTW and
lazy cancellation.

synchronization but it is expected not to be able to fulfill a
massive number of parallel workers on an engine. Our target
is thousands of workers. Therefore our simulators implement
an optimistic synhronization protocol Time Warp [5].

Time Warp requires a simulator to keep data for rollbacks.
Such data include a snapshot of the simulated system or a
log of changes of the simulated system. Note that we adopted
taking a snapshot. A simulator also has to keep anti-messages
to notify other nodes of a rollback. A simulator stores them
on memory or disks.

Spark is generally faster than Hadoop MapReduce as shown
in Section III. One of the reasons is that it keeps data on
memory from map phase to reduce phase while Hadoop
MapReduce writes them down to disks. The capacity of
memory is limited compared with disks. It is important for
simulating a large-scale system to suppress the amount of data
that reside on memory at the same time.

We test two categories of data suppressing techniques. The
technique in the first category is lazy cancellation [35]. It
suppresses rollbacks on other nodes by suppressing wasteful
sendings of anti-messages. The only cost of the technique
is judgement of the need for anti-message sendings. It is
a completely local process within a node and the cost is
negligible. Techniques in the second category are Moving
Time Window (MTW) [6] and Adaptive Time Warp (ATW)
[7]. They involve a trade-off between suppression of the
data and other factors. The techniques reduce the number of
anti-messages by limiting time window for event processing.
Instead the number of iterations to complete a simulation
increases. MTW uses a fixed size of time window and ATW
adjusts the size dynamically. ATW can adjust other parameters
such as the number of messages a node processes once. But in
this paper it adjusts the size of time window as well as MTW.

In the following experiments, the simulator is the Spark
version. Gnutella runs on a 2D mesh network with 1,000 x
1,000 = 10° nodes. 10,000 queries are issued by randomly
chosen node at random timing during 100 second. The search
target is randomly chosen another node as well as Section III.
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A. Moving Time Window

Figure 9 shows experimental results with MTW. The results
are execution times and the maximum numbers of messages
that reside on a simulator at the same time. Anti-messages are
also counted in addition to normal messages that simulated
nodes intentionally send. MTW is enabled with various sizes
of time window and lazy cancellation is applied. Infinity of
the size of time window means MTW disabled. The case of
infinity shows 133.1 second as its execution time, that is a little
less than 147 second in Figure 5. It seems to be reasonable
because the differences from Figure 5 are less queries and lazy
cancellation enabled.

As the size of time window decreases the maximum num-
ber of messages decreases. Instead execution time grows as
expected. 50 second of time window reduces the maximum
number of messages to the half of the case without MTW
but the execution time grows only 22% from 133.1 second to
162.7 second. This result suggests that MTW can double the
number of nodes if anti-messages are dominant in memory
consumption. The actual quantity of the trade-off and merit
of it depend on each simulation target but we could confirm
that MTW provides a trade-off between simulation scale and
execution time.

B. Adaptive Time Warp

Figure 10 shows experimental results with ATW. Figure
10(a) shows execution times, (b) shows the number of iter-
ations of MapReduce and (c) shows the maximum number
of messages that reside on a simulator at the same time.
The initial size of time window is 100 second. The size is
reduced by half in case the number of messages that reside
on a simulator is larger than 3,000, 000, that is a half of the
maximum number of plain Time Warp shown in Figure 10(c).
Otherwise 10 second is added to the size.

Lazy cancellation improved all the three kinds of numbers.
For example, it reduced the execution time from 383.3 second
to 138.0 second. Supposing lazy cancellation applied, the
maximum number of messages decreased from 5.1 x 10 to
3.7 x 10% at the cost of the execution time, that increased
from 138.0 second to 185.6 second. It is the same as MTW
and expected. Increase of the number of iterations from 14.2
to 29.2 contributes increase of the execution time.

In these experiments ATW refers to the number of messages
on an entire simulator to determine the size of time window.
But it is possible for ATW to watch the number of messages on
each worker. It may enable fine control of memory consump-
tion over every worker. Investigating the best methodology or
technique to control memory consumption is still part of open
problems.

C. Preliminary performance evaluation

Here we try to evaluate performance of our Spark-based
simulator by calculating the number of events processed in
a second. We count events only in a simulation target itself
and do not count events generated by a simulator such as
null messages of Null Message algorithm and anti-messages
of Time Warp.
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Fig. 10. Execution time, number of iteration and maximum number of
messages with ATW.

In the experiments in Section IV-B, a single query causes
196 message reception events at most because Gnutella runs
on a 2D mesh network and the maximum number of hops
(TTL) is 7. The number of events per query is less than 196
if the query reaches bounds of the mesh. Precise counting
concludes that 1,006,992/(196 x 1,000%) = 0.5138% of the
events decreases by reaching bounds of the mesh. A query
reaches its target object at the rate of 113/1,000% = 0.0113%
at most because a query reaches 113 nodes including the
issuing node itself. A query-hit yields a replying message and
it can increase the number of events by 7. But the product
of the number and the rate is small and we neglect it for
a conservative approximation. Consequently, the number of
events generated by 10,000 queries is a little more than
196x 10,000 (100—0.5138)%. We can calculate performance
of our simulator based on the number and the execution times
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in Figure 10(a).

dPeerSim processed 320,000 queries on 320,000 nodes
running Chord protocol in 1 hour and 6 minutes [10]. Non-
distributed PeerSim processed the same situation in 47.46
seconds. The average hop count of Chord with 320,000 nodes
is about 1/2log, 320,000 = 9.1439. Thus the number of
message reception events in the situation is 9.1439 hops/query
% 320,000 queries. Now we can calculate performance of
dPeerSim and PeerSim.

Table IV shows performance of each simulator calculated
as described above. The numbers are very preliminary because
the simulation targets, performance of a single computer and
the number of computers are different for each simulator. Each
computer of the computer cluster used in our experiments is
equipped with two 2.40 GHz Xeon processors and Gigabit
Ethernet, and it was purchased in 2010. Each computer of the
copmuter cluster used in dPeerSim and PeerSim experiments
has two 3.00 GHz Xeon processors and 2+2 Gbps Myrinet in
addition to Gigabit Ethernet, and it started to operate in the
end of 2004. They are not different in an order of magnitude.

The performance of our simulator is about 20 times of
dPeerSim and about a quarter of PeerSim. It is not very low
even compared with non-distributed PeerSim while dPeerSim
is slower than PeerSim in 2 orders of magnitude. Note that
of course a parallel simulator such as dPeerSim can process
a larger scale of system though it is not fast. An optimistic
synchronization protocol Time Warp contributed the high
performance of our simulator. Without it, the number of events
that can be processed in an iteration of MapReduce is very
limited and the number of iterations should increase much.

V. CONCLUSION

We demonstrated that a general-purpose data processing
engine can be a solid base of a parallel simulator. Our
implementations of the proposed simulator architecture run
on widely used engines, Apache Hadoop and Apache Spark.
Our simulators could process 10® nodes of Gnutella on 10
computers and the number of computers is expected to scale
to thousands as the underlying engines scale. Optimistic sim-
ulation with Time Warp enabled our Spark-based simulator
to achieve high performance, that is comparable even with
a non-distributed simulator. Memory consumption, that is a
drawback of Time Warp, could be mitigated by MTW and
ATW in return for an increase of simulation time.

Future work includes scalability challenge with thousands
of computers. It is also required to confirm how fault-tolerance
features provided by the data processing engines work. More
detailed evaluation should give an improved understanding
of the proposed approach. Experiments for such evaluation
include comparison with non-optimistic synchronization and
MPI-based implementation. Simulating other targets such as
car traffic is interesting while traffic simulation has a tendency
to be compute-intensive compared with peer-to-peer simula-
tion. Design of a parallel simulator on other models than
MapReduce is stimulating. We have implemented message
passing of distributed systems on a distributed graph process-
ing system [36].

TABLE IV
PERFORMANCE COMPARISON OF SIMULATORS.

Our simulator on Spark
with lazy cancellation
without lazy cancellation

simulating Gnutella
with 10 computers
dPeerSim
simulating Chord
with 16 computers

PeerSim
simulating Chord
with a computer

1.41 x 10% events / second
5.09 x 103

7.39 x 102

6.17 x 10*

Note that these numbers are very preliminary because simulation targets,
performance of a single computer and the number of computers for each
simulator are different.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
bers 25700008 and 16K12406. This work was also supported
by the New Energy and Industrial Technology Development
Organization (NEDO) especially in a study on future direc-
tions such as utilization of a shared memory pool.

REFERENCES

[1] “Apache Hadoop,” http://hadoop.apache.org/.

[2] “Apache Spark,” http://spark.apache.org/.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. OSDI’04, Dec. 2004.

[4] T. Klingberg and R. Manfredi, “Gnutella 0.6,” Jun. 2002, http://rfc-
gnutella.sourceforge.net/src/rfc-0_6-draft.html.

[5] D. R. Jefterson, “Virtual time,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 7, no. 3, pp. 404-425, Jul. 1985.

[6] L. M. Sokol, D. P. Briscoe, and A. P. Wieland, “MTW: A strategy for
scheduling discrete simulation events for concurrent execution,” Proc.
SCS Multiconference on Distributed Simulation, vol. 19, no. 3, pp. 34—
42, Jul. 1988.

[71 K. S. Panesar and R. M. Fujimoto, “Adaptive flow control in Time
Warp,” in Proc. PADS’97, Jun. 1997, pp. 108-115.

[8] K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay Weaver: An over-
lay construction toolkit,” Computer Communications (Special Issue on
Foundations of Peer-to-Peer Computing), vol. 31, no. 2, pp. 402—412,
Feb. 2008.

[9] K. Shudo, “Overlay Weaver: An overlay construction toolkit,” http://

overlayweaver.sf.net/.

T. T. A. Dinh, M. Lees, G. Theodoropoulos, and R. Minson, “Large

scale distributed simulation of p2p networks,” in Proc. PDP 2008, Feb.

2008, pp. 499-507.

K. M. Chandy and J. Misra, ‘“Distributed simulation: A case study in

the design and verification of distributed programs,” IEEE Transactions

on Software Engineering, vol. SE-5, no. 5, pp. 440452, Sep. 1979.

“ns-3,” https://www.nsnam.org/.

Q. Bragard, A. Ventresque, and L. Murphy, “dSUMO: Towards a

distributed SUMO,” in Proc. SUMO2013, May 2013, pp. 132-146.

M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzweicz, “SUMO -

Simulation of Urban MObility: An overview,” in Proc. SIMUL 2011,

Oct. 2011, pp. 63-68.

R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca,

and A. Lumsdaine, “Open MPI: A high-performance, heterogeneous

mpi,” in Proc. IEEE Cluster 2006, Sep. 2006.

T. Suzumura and H. Kanezashi, “Highly scalable X10-based agent

simulation platform and its application to large-scale traffic simulation,”

in Proc. IEEE/ACM DS-RT 2012, Oct. 2012, pp. 243-250.

V. A. Saraswat, V. Sarkar, and C. von Praun, “X10: Concurrent pro-

gramming for modern architectures,” in Proc. PPoPP’07, Mar. 2007, p.

271.

T. Suzumura, S. Kato, T. Imamichi, and M. Takeuchi, “X10-based

massive parallel large-scale traffic flow simulation,” in Proc. X10°12

(in conj. with PLDI’12), Jun. 2012.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Proc. 20th IEEE/ACM Int'l Symposium on Distributed Simulation and
Real Time Applications (IEEE/ACM DS-RT 2016), pp.69-76, September 2016



[19] C. Xie, Z. Hao, and H. Chen, “X10-FT: Transparent fault tolerance for
APGAS language and runtime,” Parallel Computing, vol. 40, no. 2, pp.
136-156, Feb. 2014.

[20] Y. Liu, Y. Ren, L. Liu, and Z. Li, “A Spark-based parallel simulation
approach for repairable system,” in Proc. RAMS 2016, Jan. 2016.

[21] T. Yu, M. Dou, and M. Zhu, “A data parallel approach to modelling
and simulation of large crowd,” Cluster Computing, vol. 18, no. 3, pp.
1307-1316, Sep. 2015.

[22] A. Radenski, “Using MapReduce Streaming for distributed life simula-
tion on the cloud,” in Proc. ECAL 2013, Sep. 2013.

[23] G. Pratx and L. Xing, “Monte Carlo simulation of photon migration in a
cloud computing environment with MapReduce,” Journal of Biomedical
Optics, vol. 16, no. 12, p. 125003, Dec. 2011.

[24] M. Hanai and K. Shudo, “Optimistic parallel simulation of very large-
scale peer-to-peer systems,” in Proc. IEEE/ACM DS-RT 2014, Oct. 2014,
pp. 35-42.

[25] “Hadoop Wiki - PoweredBy,” http://wiki.apache.org/hadoop/PoweredBy.

[26] “NTT DATA: Operating Spark clusters at thousands-core scale and
use cases for Telco and IoT,” https://databricks.com/blog/2015/05/14/
ntt-data-operating-spark-clusters-at-thousands-core-scale-and-use-cases
-for-telco-and-iot.html.

[27] B. Lubachevsky, “Bounded lag distributed discrete event simulation,”
Proc. SCS Multiconference on Distributed Simulation, vol. 19, no. 3,
pp. 183-193, 1988.

[28] M. Ripeanu, A. Iamnitchi, and 1. Foster, “Mapping the Gnutella net-
work,” IEEE Internet Computing, vol. 6, no. 1, pp. 50-57, Jan. 2002.

[29] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[30] “Spark on Superdome X previews in-memory on The Machine,”
http://www.nextplatform.com/2016/04/11/spark-superdome-x-previews
-memory-machine/.

[31] K. Jiinemann, P. Andelfinger, J. Dinger, and H. Hartenstein, “BitMON:
A tool for automated monitoring of the BitTorrent DHT,” in Proc. IEEE
P2P’10, Aug. 2010.

[32] “BitMon,” https://dsn.tm.kit.edu/english/bitmon.php.

[33] “Gartner says 6.4 billion connected “Things” will be in use in 2016, up
30 percent from 2015,” Nov. 2015, http://www.gartner.com/newsroom/
id/3165317.

[34] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, no. 8, pp. 103—111, Aug. 1990.

[35] A. Gafni, “Rollback mechanisms for optimistic distributed simulation
systems,” Proc. SCS Multiconference on Distributed Simulation, vol. 19,
no. 3, pp. 61-67, Jul. 1988.

[36] M. Hanai and K. Shudo, “Simulation of large-scale distributed systems
with a distributed graph processing system,” Tech. Report of IEICE, vol.
112, no. 173, CPSY2012-27, pp. 109-114, Aug. 2012, (in Japanese, not
peer-reviewed).

Proc. 20th IEEE/ACM Int'l Symposium on Distributed Simulation and
Real Time Applications (IEEE/ACM DS-RT 2016), pp.69-76, September 2016





