COMPSAC 2016
June 2016

Causal Consistency
for Distributed Data Stores and Applications

as They are

Kazuyuki Shudo, Takashi Yaguchi

Tokyo Tech
Ll

Background:
Dls_trlbuted data store .

LT mA

e Database management system (DBMS)
that consists of multiple servers.

— For performance, capacity, and fault tolerance
— Cf. NoSQL

* A data item is replicated.

1-5 Replicas

S
The base of our W/ Em&

implementation . :
cassandra
| | | | *

A cluster of 1-1,000 Servers “ rl G k

1/11

Background:
Causal consistency

£ N i"

':'_.,-.I.\i&

* One of consistency models.

* A consistency model is @ CON{Iract between DBMS and a client
— of what a client observes.

— Itis related to replicas closely. If a client see an old replica, ..

® Consistency models related to this research:
— Eventual consistency

o All replicas converge to the same value eventually.
* Most NoSQLs adopt this model.

— Causal consistency

e All writes and reads of replicas obey causality relationships
between them. 2/11

Background:
Causal consistency

» Anexample: SOCial networking site
Causally consistent Not causally consistent

/ Now I'm in \ / o A Jient does not see
Atlanta! AN the original post

T dependency Tdependency

It's warmer than @ It's warmer than A client
I expected. m I expected. &
- 2N Y

e Precise definition

— Write after read by the same process (client)

— Write after write by the same process - illustrated above

— Read after write of the same variable (data item)
regardless of which process reads or writes 3/11

Contribution: R
Letting-It-Be protocol =

e A protocol to achieve causal consistency on an eventually consistent
data store.

e [t requires no modification of applications and data stores.

Data store approach Middleware approach
Ex. COPS, Eiger, ChainReaction and Orbe

Existing protocol Our Letting-It-Be protocol

Ex. Bolt-on causal consistency does not require any modifications
to either data stores or applications

[Applications] [Applications] [Applications]

modified to spécify explicitly
data dependenvcy to be managed

Access

y

4)

Middleware Middleware

\ 2 \ 2
Eventually consistent| |[Eventually consistent| |Eventually consistent
. data store) data store data store

------ Modified part of software 4/11

Cgusality resolution ingeneral
3 SOUTH SO
o KAREAL £

@ s
¢_‘—\ i-; y
"ﬂ_:', {1 "\. N "‘. '-.i'."".'

* Servers maintain dependency graphs and
resolve dependency for each operation.

Causal dependency Causal dependency
between operations between variables
Client 1 1 Client 2 Client 3 .
4
i W(Xl) U;I Level 2
W(yz) Ry 4 Y
(yz) W(Zl) X1 YZ Z1 Level 1
N1/
R(Zl) dependency V3 Level 0
Dependency graph
Tlme W(V3) for the version 3 of v. 5/11

SUUTH

Causality resolution

AN AT S s B _ Krl:-.‘t;h,a e

Ex. COPS, Eiger,

* Data store approach — write time ™ cuinkescton and orbe

— When a server receives a replica update of v3, before writing v3,
the server confirms the cluster has level 1 vertexes, x1, y2 and z1.

e 14 is confirmed when z1 is written.

* Middleware approach — read time

Ex. Bolt-on causal consistency,

— It cannot implement write-time resolution. Letting-It-Be (our proposal)

* Because a middleware cannot catch a replica update.

— When a server receives a read request of v, the server confirms
that the cluster has all the vertexes including x1, y2, z1 and u4.

U4 T Level 2
Ny
X1 YZ Z1 Level 1

Dependency graph N1t/
for v3 V3 Level O 6/11

v TR
ewmhg"

It requlres no mod1f1cat10n of a data store. But there,\are problems

. Overwntten dependency graph

— Dependency graph for v4 overwrites graph for v3 though
it is still required as part of graphs for other variables.

— Solution: ... (in the next page)

————————

B A A
1 (ORI 1
1 1
__ _Y§ __. can be lost.
n, A A R A
V3 is to be overwritten by v4. tl
Dep graph for v Dep graph for ¢

e Concurrent overwrites by multiple clients

— Multiple v3 are written concurrently.
— Solution: Mutual exclusion with CAS and vector clocks. , 11

Solutions to g

it.' -\

Overwntte“ dePendencY graph p.roblenm

KOREA

. Bolt—on attaches entire graph (!) to all the var1ables.

— It reduces the amount of data by forcing an app to specity deps explicitly.
— It requires modification of apps. ®

* Our Letting-It-Be keeps graphs for multiple versions
such as v4, v3.

— It reduces the amount of data by attaching only level 1 vertexes.

— It requires no modification of apps. ©

— It traverses a graph across servers ®, but marking technique reduces it.
— It requires garbage collection of unnecessary old dep graphs. ®

/. l’” A 4 e

- V3. : Bol h

i ' Bolt-on attaches _

' m_ 4 A | entire graph. koA A Letting-It-Be keeps

A multiple versions of
\ t1) V4 V3 . graphs up to level 1.

Dep graph for ¢ Dep graph for v 8/11

Performance

Our contribution is a protocol that requires
no modification of both apps and a data store.

But, performance overheads should be acceptable. It depends on an application.

Benchmark conditions

— 2 clusters, each has 9 servers running Linux 3.2.0,
and 50 ms of latency between the clusters

— Apache Cassandra 2.1.0, configured as each cluster has one replica.
— Letting-It-Be protocol implemented as a library in 3,000 lines of code
— Yahoo! Cloud Serving Benchmark (YCSB) [acm socc 2010] with Zipfian distribution

Application \“\
| Client || Client || Client I ------ N\
|

Data

i N
i ‘ I o [, Ko

Middleware Middleware | .-
Center 1 \
. . l T l T l T l T K \ Data
/m Eventually 1é Center 3
%w Consistent

_ = ==+Data SloreL
cassandra ﬁ @—-{ @/[; Supposed system model 9/11

Average Latency (ms)

Performance L

SOUTH kL
5 KOREA " e W

4
l. }.

'l
-

F n.*b

P % e _'
.i'~

Read latencies with read-heavy workload Write latencies with write-heavy workload
=#=0ur-middleware =#l=Cassandra =#=0ur-middleware =#~Cassandra
12 1 e A
| Maximum throughput z _ <
o o 21% lower = 1 : Maximum throughput
: . / D ¢ : /6.6 78% lower
C T & :
. o 5 Lt
oy g , 0.9 . |
: lot.--h——‘—ﬁ;/— S | maaa—w - —
0 i1 J § o= e
Q 3 5 I7 10 15 20 25 30 35 40 0 3 5 7 10 15 20 25 0 a5 a0

Throughput (Kops/s) Throughput (Kops/s)

* Opverheads for reads are smaller than writes though the protocol
does read-time resolution.

— Marking already-resolved data items works well.

e Comparison with Bolt-on is part of future work. 10/11

i] -
t?t
B "_‘Li \}

Summary o :-='.i-:a-»x

S0UTH Qﬁwm
}-

.-ﬂ. \‘}"' { 4 b ; Hn“’.ﬁ £

o Letting-It-Be protocol maintains causal c0n51stency

over an eventually consistent data store.

— We demonstrated that
it works with a production-level data store, Apache Cassandra.

e [tis unique in that it requires no modifications of
applications and a data store.

e Future direction

— A better consistency model that involves
* less modification to each layer,
®]ess costs,
* less and simple interaction between layers,

* easier extraction of consistency relationships from an application.
11/11

