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Abstract—There have been proposed protocols to achieve causal
consistency with a distributed data store that does not make
safety guarantees. Such a protocol works with an unmodified data
store if it is implemented as middleware or a shim layer while
it can be implemented inside a data store. But the middleware
approach has required modifications to applications. Applications
have to specify explicitly data dependency to be managed. On
the contrary, our Letting-It-Be protocol handles all the implicit
dependency naturally resulting from data accesses though it
is implemented as middleware. Our protocol does not require
any modifications to either data stores or applications. It trades
performance for the merit to some extent. Throughput declines
from a bare data store were 21% in the best case and 78% in
the worst case.
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I. INTRODUCTION

Geo-replication is one of primary features of distributed
data stores whereby a client of a data store can access data
with small latencies by choosing nearby replicas. But geo-
replication usually trades stronger consistency models for its
merits [1][2] and then such distributed data stores maintain a
consistency model such as eventual consistency [3][4][5], that
does not make safety guarantees.

There have been attempts to add support for stronger consis-
tency models to such distributed data stores while preserving
their merits. Causal consistency has been the target of those
attempts. There are two approaches to it, data store approach
and middleware approach. In the former approach a protocol
to achieve causal consistency is implemented in a data store
itself. In the latter approach a middleware over a data store
implements a protocol.

The middleware approach has an advantage over the data
store approach in that it works with an unmodified data
store. But the middleware approach involves large dependency
graphs to be managed and then the existing protocol taking
the middleware approach [6] reduces the size of the graphs by
making data store clients specify explicitly dependency to be
managed. This means the middleware approach has required
modifications to applications. On the contrary, our Letting-
It-Be protocol handles all the implicit dependency naturally
resulting from data accesses though it is implemented as
middleware. Our protocol does not require any modifications
to either data stores or applications (Figure 1).

This paper is organized as follows. Section II provides prior
knowledge by introducing related consistency models and ex-
isting protocols. Section III describes our protocol. Section IV

Fig. 1. Approaches to achieving causal consistency.

shows experimental results of performance measurement and
discusses them. In Section V, we summarize our contributions.

II. BACKGROUND

This section provides dependency representation for the
following section, and existing approaches and protocols.

A. Causal Consistency

Causal consistency is a consistency model in which all
writes and reads of data items obey causality relationships
between them. If a write or read operation influences a
subsequent operation, a client that observed the second can
always observe the first [7][8]. Consider a social networking
site as an example of a real-world application. User A posts
a photograph on the site. User B sees the photograph and
posts a comment on it. All the users who see the comment
expect to see the photograph as well. Accordingly, a causally
consistent data store guarantees that any user that can observe
the photograph if the user observes the comment.

Figure 2 shows an example of operation sequences per-
formed by client 1, 2 and 3. W (xi) and R(xi) mean a write
operation and a read operation of xi. xi indicates the version
i of the key x. Arrows represent causality relationships.

It is a graph of operations and it can be transformed to a
graph of data items, strictly a graph of versions of keys. Figure
2 results in Figure 3, that is the dependency graph of v3.

In a dependency graph, we define levels. A version of a key
that is the source of the dependencies is the level 0 vertex.
Versions of keys that level i vertex directly depend on are
level i+ 1 vertexes. In Figure 3, v3 is the level 0 vertex. x1,
y2 and z1 are level 1 vertexes. u4 is a level 2 vertex.
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Fig. 2. Example of write and read sequences, and causality relationships
between operations.

Fig. 3. Dependency graph in case of Figure 2.

If the source of the dependencies (level 0 vertex, v3 in Figure
3) is a target of a write operation, level 1 vertexes, that the
source directly depends on, are one of the followings. Our
protocol utilizes this fact as described in Section III-B.

1) The last write — a version of a key written just before
the source by the same client (x1 in Figure 3)

2) Reads following the last write — versions of keys read
after the last write by the same client (y2 and z1 in
Figure 3)

1) Explicit specification of causality relationships: Causal-
ity relationships occur spontaneously when data items are
written and read. But an application may not require all the
relationships to be maintained. It depends on an application.
In that case the amount of the relationships can be reduced
by making the application explicitly specify relationships to
be maintained. The existing protocol taking the middleware
approach [6] requires such explicit specification to reduce the
amount of causality relationships it handles.

The explicit specification works as far as the application can
identify and specify causality relationships that the application
requires. On the other hand, such a protocol cannot be adopted
in case an application cannot identify the requisite causality
relationships or cannot be modified.

B. Eventual consistency
There have been emerging distributed data stores whose

goals are scalability on numbers of servers while keeping their
availability. In compensation for scalability and availability,
they loosed requirements on data consistency and their major
target has been eventual consistency [3][4][5]. Eventual con-
sistency is a consistency model in which all replicated data
items converge to the same value eventually. It is a liveness
guarantee and does not make safety guarantees, that causal
consistency makes.

C. Existing protocols and related work
This section describes existing protocols to maintain causal

consistency with a distributed data store that does not make
safety guarantees, thereby presenting our contributions.

Existing protocols took one of the two approaches, data
store approach and middleware approach. A protocol taking
the data store approach is implemented in a data store itself and
then requires modifications to a data store. A protocol taking
the middleware approach is implemented as a middleware that
works over a bare data store and does not require modifications
to the data store itself.

Examples of the data store approach are COPS [9], Eiger
[10], ChainReaction [11] and Orbe [12]. Bolt-on Causal Con-
sistency [6] took the middleware approach.

An advantage of the data store approach is that it allows
dependency resolution when writing, that we call resolution-
on-write. A protocol taking the data store approach works as
follows. When receiving a replica update of xi, before writing
xi, the protocol confirms that the data items that xi directly
depends on have already been written. For each data item, for
example xi, the protocol keeps pointers to other data items that
xi directly depends on. The pointers enable the dependency
confirmation.

The middleware approach does resolution-on-read because
it cannot implement the resolution-on-write. The resolution-
on-write requires changes to a replication mechanism inside a
data store. In detail, it has to capture all replica updates that
happen inside a data store. The middleware approach cannot
adopt the resolution-on-write because it does not make changes
to a data store itself.

The resolution-on-read involves the problem of overwritten
dependency graph, that is called overwritten histories by Bailis
et al. [6]. If a protocol lacks an adequate treatment for the
problem, part of a dependency graph can be overwritten and
lost though the entire graph is still required. In Figure 3, if
z1 has been just replaced by z2, a client that tries to read v3
cannot find z1. Resolution cannot finish.

To address the problem of overwritten dependency graph,
the existing protocol taking the middleware approach [6] keeps
an entire dependency graph for each data item. In Figure 3,
the existing protocol keeps the entire graph consists of v3, x1,
y2, z1 and u4 for a data item v3. This treatment enables the
protocol to check the entire graph for v3 even if z has been
updated to z2.

But this treatment involves large dependency information
that a middleware has to keep. Accordingly, The existing
protocol reduces the amount of dependency information to
be kept by explicit specification described in Section II-A1.
The explicit specification requires an application to identify
and specify causality relationships that it requires. The existing
protocol does not work if an application cannot identify the
requisite relationships or cannot be modified.

III. CAUSAL CONSISTENCY FOR DISTRIBUTED DATA
STORES AND APPLICATIONS AS THEY ARE

In contrast to the existing protocols, our Letting-It-Be
protocol takes the middleware approach and handles all the
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Fig. 4. Supposed system model.

implicit causality relationships. Therefore, it does not require
any modifications to either data stores or applications (Figure
1). It works with them as they are.

Section III-A shows the system model the following descrip-
tion of our protocol supposes. In succeeding Sections III-B,
III-C and III-D, we propose the protocol.

A. System model
Figure 4 depicts a system model the following description

of our protocol supposes. Application instances, middleware
instances and a cluster running a data store are located at the
same site and they form a local set of servers. There are a
number of such local sets providing the same service to users.
Such local sets are geographically distributed and usually each
set serves nearby users. In the real world, a data center hosts
a single or several local sets of servers.

An application instance accesses only its paired local data
store cluster. Each cluster holds all the data items, that are
available locally in a local set. To achieve it, a data item has
to be replicated to all the local sets.

A middleware instance mediates between applications and a
data store cluster and maintains causal consistency. Note that
middleware instances do not communicate each other unless
a protocol requires. Our protocol performs mutual exclusion
between middleware instances in a local set (Section III-D),
but our current implementation involves no communication
between the instances. Mutual exclusion is carried out with
a compare-and-swap (CAS) feature of underlying data stores.

A data store is eventually consistent and its policy to choose
the last value is “last-write-wins”, in which a value with the
largest time stamp is chosen as the last value.

B. The base Letting-It-Be protocol
This section describes a simplified version of our Letting-

It-Be protocol that handles neither concurrent multiple clients
nor the problem of overwritten dependency graph depicted in
Section II-C.

When a middleware instance receives a write request, that
is a pair of a key and a value, from a client, it embeds
dependency information of the received key in the received
value. The embedded dependency information consists of an
updated version number of the received key and a set of
versions of keys that the received key directly depends on.
They are level 0 and 1 vertexes of a dependency graph. In

Figure 3, a middleware instance receiving a write request to v
embeds 3 as the version of v, x1, y2 and z1 in the value of v.
And then the middleware instance writes the processed value
with the requested key to a data store.

This embedding process requires a middleware instance to
keep level 0 and 1 vertexes for all the keys it has. As described
in Section II-A, level 1 vertexes are the last write (x1) just
before the write to the source of the dependency graph and
reads (y2 and z1) that follow the last write. A middleware
keeps a history that consists of the last write (x1) and the
following reads (y2 and z1). They are just level 1 vertexes and
the middleware embeds them.

In our protocol, a middleware instance keeps only level 0
and 1 vertexes for each key unlike the existing protocol [6]
that requires an entire graph. By limiting levels it keeps, a
middleware instance can handle all the implicit dependency
naturally resulting from data accesses.

When a middleware instance receives a read request, that
is a key, from a client, it reads a value corresponding to
the key from a data store. The read value is accompanied
by dependency information, that is a history. The middleware
instance starts resolving dependency based on the dependency
information. It reads values of level 1 keys from a data store
to obtain level 2 vertexes, reads values of level i keys to obtain
level i + 1 vertexes, and then traverses the entire graph. An
entire graph is available locally in a cluster of servers running
a data store because a cluster in a local set, usually located in
a data center, has at least one replica of all data items (Section
III-A).

Resolution-on-read finishes in success if values of all the
vertexes of the entire graph are available, and the middle-
ware instance reply the value after stripping the dependency
information off the value. In case a value of a vertex is
not available resolution finishes in failure. In that case a
middleware implementation has options. An option is waiting
for the entire graph to be available. Another option is returning
a previous version of the requested key that has been resolved
once. Our current implementation returns an error to a client.

A middleware instance marks a version of a key in case
dependency resolution of it once succeeds. The marks prevent
repeated resolution.

C. Problem of overwritten dependency graph
The base protocol does not treat the problem of overwritten

dependency graph depicted in Section II-C. The base protocol
assumes that there is a single client accessing a data store
sequentially but succeeding writes by the same client can
overwrite part of a graph even without multiple clients.

Here we extend the base protocol to handle the problem.
In the base protocol, a key is accompanied by dependency
information for a single version of the key. The extension lets a
key to be accompanied by dependency information for multiple
versions of the key. In Figure 3, a write to z overwrites z1 by
z2 in the base protocol. Now the value of z holds dependency
information for both versions z1 and z2 with the extension. A
middleware instance embeds them in the value such that z1
depends on u4 and z2 depends on its dependency destinations.
This treatment prevents z1 from being overwritten.
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Even with the extension, the amount of dependency infor-
mation is smaller than the existing protocol [6], that keeps an
entire dependency graph for each key. The existing protocol
keeps the same dependency information for multiple keys
duplicatedly. In Figure 3, the graph for v3 includes dependency
information as that z1 depends on u4. Graphs for other keys
depending on z1 also include the same information duplicat-
edly. In our protocol, dependency information such that z1
depends on u4 appears once in a data store in a local set.

Old dependency information should be wiped out after it
becomes unnecessary. A mechanism like garbage collection
in programming systems works. There is a trade-off between
garbage collecting techniques such as mark and sweep and
reference counting. Comparison between them is one of open
problems, although they should have little effect on access
performance because they run in the background.

D. Concurrent overwrites by multiple clients
Assuming multiple clients accessing a data item concur-

rently, required dependency information can be lost even with
the multiple versions.

In case multiple clients try to update dependency informa-
tion of a key, it is possible for an update to be overwritten
by other updates. Suppose that client A and B concurrently
try to update dependency information of a key z. After both
clients read dependency information of z1, they try to write
updated dependency information. Client A writes z2 with
dependency information and then client B writes z′2 with
different dependency information. Dependency information of
z2 is lost.

There is a variety of options to this kind of concurrency
problem. We takes a write-time solution in a local set (Section
III-A) and a read-time solution between local sets. Mutual
exclusion takes place in a local set and multiple versions are
maintained for each local set.

A local set can take any technique for mutual exclusion such
as locking and it works. Our current implementation takes an
optimistic technique, that is compare-and-swap (CAS). The
implementation utilizes CAS feature of an underlying data
store.

Mutual exclusion tends to be costly if it is carried out
between local sets. It involves communication between local
sets in either cases of optimistic techniques or pessimistic
techniques such as locking. Communication between local sets
can get across boundaries of data centers, that are supposed to
host local sets, and it involves large latency. In our protocol,
write and read operations do not involve any communication
between local sets. In a data store, a key has distinct versions
for each local set. For example, a key z has distinct versions,
z LS1 and z LS2, for local sets LS1 and LS2. A middleware
instance writes only to the version for the local set it belongs
to. Overwriting a key for other local sets does not take place.

All the versions for all the local sets are replicated to all the
local sets by replication feature of an underlying data store
(Section III-A). The local sets LS1 and LS2 eventually have
updated dependency information of z LS1 and z LS2. When
reading, a protocol has to determine which is the last one

TABLE I. YCSB WORKLOADS USED IN SECTION IV.

Workload Write Read Access distribution
Write-heavy 50% 50% Zipfian distribution
Read-heavy 5% 95% Zipfian distribution

TABLE II. SERVER CONFIGURATION.

OS Ubuntu 12.04.3
with Linux 3.2.0

CPU 2.40 GHz Xeon E5620 × 2
Memory 32 GiB RAM

Java Virtual Machine Java SE 7 Update 4

between distinct versions for local sets, for example, between
z LS1 and z LS2. We choose to maintain causal consistency
here and use vector clocks [8] for the purpose. Dynamo [3]
and Riak [4] adopt the same policy and technique. After
a system trouble involving network partitions, a middleware
occasionally finds concurrent conflicting values between the
distinct versions. Causal consistency allows it to return any
value of them. Our current implementation chooses one of the
concurrent values based on identifiers of local sets.

A whole picture of our protocol is as follows. By vector
clocks, a middleware instance captures causality relationships
between distinct versions of a key for each local set such
as z LS1 and z LS2. By dependency graphs, it captures
causality relationships between different keys such as x, y
and z. There is a trade-off between mutual exclusion and
distinct versions. It is part of future work to investigate the
best boundary between them.

IV. PERFORMANCE EVALUATION

The contribution of our work is a protocol that maintains
causal consistency with no modification to either applications
or a data store. Though performance is not the center of
our interest, the amount of performance overheads should
be acceptable in exchange for the merit. It depends on an
application but anyway this section shows experimental results
of performance measurement.

A. Implementation and benchmark conditions
Our implementation of the proposed protocol described

in Section III consists of 3,000 lines of Java code. It uses
Google’s Protocol Buffers 2.5.0 for data serialization and
Google’s Snappy 1.1.2 for data compression.

The implementation is based on Apache Cassandra 2.1.0
[13][14], that is a production-level and widely deployed dis-
tributed data store. Cassandra conforms the system model
the protocol supposes described in Section III-A as follows.
It provides a function to place replicas of a data item on
every data center (NetworkTopologyStrategy). All the
replicas converge to the same value because Cassandra adopts
eventual consistency.

The current implementation performs mutual exclusion us-
ing compare-and-swap (CAS) (Section III-D). Cassandra pro-
vides the feature. We implemented the protocol as a library
for a client as the same as the existing protocol taking the
middleware approach [6] though it is possible to implement as
software serving clients via a network.
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Fig. 5. Write latencies with write-heavy workload.

Fig. 6. Read latencies with write-heavy workload.

We use Yahoo! Cloud Serving Benchmark (YCSB) [15]
to measure performance of the implementation. It has been
widely used by a variety of researches on cloud storage [16].
YCSB issues write and read queries to a target data store
continuously and measures access latency. An user of YCSB
can specify the ratio of write and read operations, distribution
of accesses to data items and the target of throughput that is
the number of queries in a unit time. We impose two diverse
workloads, write-heavy and read-heavy, on the implementa-
tion. Table I shows parameters of the two workloads.

9 servers emulate a data center and and two sets of it
emulate two data centers. All the 18 servers run Cassandra and
compose a cluster of Cassandra. Another server runs YCSB
to access other 18 servers. Table II shows the configuration
of the servers. All the servers are on the same LAN but
communication latency between the data centers is emulated
by imposing 50 milliseconds of latency with a tool named
tc. We configure the Cassandra cluster to have one replica
in each emulated data center by setting replication strategy
as NetworkTopologyStrategy and consistency level as
ONE. By that, each of the two emulated data centers has its
own replica. These settings correspond to the situation in which
each of the two data centers hosts a local set.

B. Write and read performance
The number of data items is 10,000,000 and the size of

a data item is 1 KiB. The total amount of the data items is

Fig. 7. Write latencies with read-heavy workload.

Fig. 8. Read latencies with read-heavy workload.

about 10 GiB or more with their metadata such as schema
information. After loading all the data items into the Cassandra
cluster, we warm up the cluster with the same workload as the
following measurement. And then we measure performance.

We examine overheads imposed by the proposed protocol
by performance comparisons with the bare Cassandra. It is
interesting to examine performance of the existing protocol
taking the middleware approach [6] at first sight. But the ex-
isting protocol is designed to be able to handle only explicitly-
specified dependency, not all the implicit dependency, that

Fig. 9. Maximum throughput with each read / write ratio.
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is our target. Explicit specification of dependency allows the
existing protocol to run but it is not our target and our protocol
does not support it.

Figure 5 and 6 show access latencies with the write-
heavy workload. At 3 and 7 Kbps of throughput, with our
implementation, write latencies are 5.2 and 6.6 milliseconds.
Read latencies are 3.9 and 7.2 milliseconds. Without our
implementation, write latencies are 0.9 and 0.9 milliseconds.
Read latencies are 1.2 and 1.4 milliseconds. Thus overheads
in write latencies are 4.3 and 5.7 milliseconds, and overheads
in read latencies are 2.7 and 5.8 milliseconds. The maximum
throughput with our implementation is 78% lower than the
bare Cassandra.

Figure 7 and 8 show access latencies with the read-heavy
workload. At 3 and 7 Kbps of throughput, with our im-
plementation, write latencies are 4.2 and 4.2 milliseconds.
Read latencies are 1.4 and 1.4 milliseconds. Without our
implementation, write latencies are 1.0 and 1.0 milliseconds.
Read latencies are 1.2 and 1.2 milliseconds. Thus overheads
in write latencies are 3.2 milliseconds, and overheads in read
latencies are 0.2 milliseconds. The maximum throughput with
our implementation is 21% lower than the bare Cassandra.

The read-heavy workload showed smaller overheads than
the write-heavy workload. Figure 9 shows the maximum
throughputs with different ratios of read and write operations.
A larger ratio of read operations exhibits better throughput.

Dependency resolution should contribute to the overheads
much because it involves multiple accesses to a data store. An
access to a data store is one of the heaviest processes because
it involves communication over a network. The read-heavy
workload requires larger number of dependency resolution
than the write-heavy workload because our protocol performs
resolution when reading. But if a version of a key has been
marked as resolved once, further traversal of a dependency
graph is not required as described in Section III-B. More
frequent reads yield more marks and reduce the number of
accesses to a data store. In summary, more reads increase the
number of dependency resolution but decrease the number of
accesses to a data store in dependency resolution. It seems
that the latter effect is greater in the Zipfian distribution YCSB
produces. It is interesting to investigate other distributions and
find the rational for the results. They are part of future work.

V. CONCLUSION

We presented a protocol Letting-It-Be to maintain causal
consistency over an existing production-level eventually con-
sistent data stores. Our protocol is unique in that it handles all
the implicit dependency naturally resulting from data accesses
though it is implemented as middleware. That is, it does not
require any modifications to either a data store or applications.
It works with them as they are.

Performance overheads of the proposed protocol heavily de-
pend on a workload. Throughput declines from bare Cassandra
were 21% in the best case and 78% in the worst case.

Future work includes performance measurement with var-
ious workloads including real-world ones though YCSB em-
ulates them. Forms of dependency graphs have an effect on

performance of resolution as pointed out in Section III-B and
it is worthwhile to investigate how workload properties affect
the forms.
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