
A Caching Mechanism Based on Data Freshness

Yasunari Takatsuka, Hiroya Nagao, Takashi Yaguchi, Masatoshi Hanai, Kazuyuki Shudo
Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 Japan
Email: takatsuka.y.aa@m.titech.ac.jp

Abstract—Use of cache is an effective way to improve access
to a databases. However, when data in the cache are not up-
dated or invalidated when writing to databases, the possibility
increases with time that data in the cache will differ from data
in the database. Therefore, we propose to adjust the balance
between data freshness and access performance by switching
between the use and non–use of a cache based on the load on
the databases or on access performance. We also suggest and
test a way of implementing the switching.

Index Terms—Data freshness, Cache, Distributed database

1. Introduction

One general way to improve performance in accessing
databases is to replicate the data to locations that can be
accessed by clients at high speeds. A typical example is a
cache, which replicates data which is accessed once to a
location that can be accessed by clients at high speeds and
then clients access the replication in subsequent read re-
quests. Specifically, communication latencies can be reduced
by replicating data to servers that are geographically close
to clients, and read latencies can be reduced by duplicating
data to memory to reduce the number and duration of disk
accesses. In such techniques, there is the problem of decid-
ing the extent to which we maintain consistency between the
original data and replications. Unless the cache is updated or
invalidated, cached data will become obsolete when data in
the database are replaced, removed, or augmented; so over
time, the possibility of clients reading old data gradually
increases. In this paper, we refer to this situation as a
reduction in data freshness.

For example, if an attempt is made to obtain the most
recent data without the use of the external caches even
though the database is overloaded, access performance is
sacrificed. However, there are applications, such as access
counters on a web pages, in which performance is deemed
to be more important than reading the most recent data. In
such cases, it is possible to maintain access performance
by using the cache while allowing a temporary reduction in
data freshness.

Therefore, we propose adjusting the balance between
data freshness and access performance depending on the
load on the database, and we propose a method for con-
trolling the frequency of use of the cache. To evaluate

the proposed method, we design and implement a cache
mechanism based on the proposed method and perform
experiments in combination with a database management
system. By the experiments, we confirm that the proposed
method can adjust the balance between data freshness and
access performance.

The rest of this paper is organized as follows. In Section
2, we define data freshness, and in Section 3 we review re-
lated work. In Section 4, we describe the proposed method,
and we present the design and implementation of the cache
mechanism that is based on the proposed method. In Section
5, we report results from experiments for evaluating the
performance of the proposed method. Finally, in Section 6,
we summarize conclusions and consider future work.

2. Data freshness

An external cache is sometimes used to compensate for
the performance of a database; this might be achieved by
using such software as memcached [5] [7] or Redis [6]. If
data are saved to an external cache, so long as the data
are not updated or invalidated, the cached data will become
obsolete over time. In other words, the possibility that data
on an external cache differ from the data in the database
gradually increases. In this paper, we use data freshness to
mean the newness of the cached data, or, equivalently, to
refer to the probability that consistency is maintained.

We can measure data freshness by using indicators such
as the rate at which the latest data are read and the time
between successive updates of the cached data.

3. Related work

There are two methods for invalidating old cached data:
(a) invalidating the data simultaneously with write opera-
tions to the database and (b) invalidating the data by some
other timing.

In method (a), it is always possible to get the latest
data at the time of reading. In addition, there may be
a minimum number of cache updates that are required.
However, situations in which this method is available are
limited. To implement this method, the write side, or the
original database side, must access the cache and be able
to manage it. Therefore, it is difficult to update the cache

Proc. 3rd Int'l Conf. on Big Data and Smart Computing (BigComp 2016), pp.329-332, January 2016



at the time of writing when some application other than the
application that manages the cache writes to the database.
In addition, cache updates are likely to be costly when the
cache is distributed or the output of an application is cached
and the output uses data from the database.

When the method of invalidating the cache simultane-
ously with write operations is not available, method (b)
could be used. A typical example is to attach an expira-
tion date to the cache. This approach can be used without
restrictions, unlike method (a), because the operation of
invalidating is completed in the cache. In this way, minimum
data freshness is guaranteed by the restriction of not reading
data that are older than the expiration date.

In method (b), the“expiration date”is the parameter that
adjusts the balance between data freshness and performance.
Although the minimum freshness specified by the expiration
date is secure, it is not possible to guarantee performance
as a result of cache utilization. Therefore, if the application
wants to guarantee the worst–case response time of the
database, this poses a problem that can greatly compromise
data freshness because it is necessary to set the expiration
date to a value longer than necessary.

In our proposed method, we use“ performance” as
a parameter to adjust the balance between data freshness
and performance. For example, by setting the desired com-
munication latency to the minimum guaranteed for“ per-
formance,” it is possible to maintain high data freshness
while maintaining the average communication latency.

Other studies of changing the service level depending
on load and access performance of databases have been
reported. The method of Terry et al. [3] is an example.
That method sets levels on the consistency guaranteed by
the database and changes consistency levels depending on
the read latency from the database. In contrast, our proposed
method does not limit the configuration of the database, their
method presupposes implementation to a database manage-
ment system itself under a master-slave configuration. In
such configurations, it is difficult to achieve performance for
a number of machines since writing is necessarily performed
on the master.

4. Proposed method

Typical database management systems ensure that they
can read the latest data. In other words, they do not allow
reductions in data freshness. In contrast, by sacrificing the
minimum data freshness, we intend to achieve the target
access performance.

If a cache is used, data freshness is reduced when access
performance is improved. Therefore, our method adjusts the
balance between data freshness and access performance by
switching between use and non–use of a cache. Specifically,
the method monitors the load on the database and switches
to use a cache only when the load is high. For example, the
method monitors read latency and switches to use a cache
when the latency exceeds a target value that is specified in
advance. This enables data freshness to be maintained under

low loads and access performance to be improved under high
loads at the expense of data freshness.

Our proposed method does not limit the function of a
cache itself, so it can be combined with another techniques
like ”expiration date” and any replacement policies for data
on a cache.

4.1. Implementation

To evaluate the proposed method, we design and im-
plement a prototype of the cache mechanism. The cache
mechanism is implemented using the application program
interface of an existing database management system; the
cache mechanism serves as a reverse proxy of a database. In
this paper, we call the cache mechanism a freshness–aware
reverse proxy (hereafter, FARP).

4.1.1. Switching between use and non–use of a cache.
The implemented cache mechanism measures read latency
between FARP and the database, and it switches between
use and non–use of the cache to read data from the cache
only when the measured latency exceeds a target value.

Sometimes, read latency increases suddenly because
individual read latency varies somewhat according to the
status of the database. For example, if the data to be read
is present in the memory of the database, the read latency
is small; otherwise, the read latency is large. Therefore,
the accuracy of the latency control can fall if the switch
between use and non–use of a cache is judged every time a
read request is issued. Accordingly, we use an average read
latency to decide when to switch between use and non–use
of the cache. The interval at which to judge for switching
between use and non–use (hereafter, judgeInterval) is set
by specifying the number of reads used to calculate the
average latency. The switch between use and non–use is
judged every time the number of reads reaches the value of
judgeInterval.

4.1.2. Dynamic adjustment of judgeInterval. As men-
tioned in Section 4.1.1, the interval to judge for switching
between use and non–use of the cache (judgeInterval) is
equivalent to the interval for calculating the average read
latency. Then, the average latency becomes more accurate as
the value of judgeInterval is increased because the number of
samples used to calculate the average latency is increased.
However, if judgeInterval is too large, switching may not
take place when switching is really required (e.g. when
latencies become increased). Conversely, if judgeInterval
is small, finer control over switching is attained, but we
increase the possibility of switching when no switching is
needed (e.g. when a latency sharply increases by chance).
This can occur because the number of samples used to
calculate the average latency is reduced, so the estimate for
the average latency is less accurate.

Therefore, we implemented FARP to dynamically
change judgeInterval according to the measured average
latency. FARP calculates the ratio of the average latency
to the target value that FARP tries to maintain every time

Proc. 3rd Int'l Conf. on Big Data and Smart Computing (BigComp 2016), pp.329-332, January 2016



the average latency is calculated; when the ratio is large,
a correspondingly large change in judgeInterval imposed.
However, an upper bound is also imposed on judgeInterval
to prevent it from becoming too large.

Changes in judgeInterval are done by the following
equation. The initial value and upper limit of judgeInterval
can be set separately when the cache is used and when it is
not used. We call the initial value when using a cache ini-
tialIntervalWhenCaching (iIWC) and the initial value when
not using a cache initialIntervalWhenNotCaching (iIWNC).

• When using a cache
judgeInterval = iIWC × (average latency / target
value)

• When not using a cache
judgeInterval = iIWNC / (average latency / target
value)

When using the cache, the interval between calculations
of the average latency becomes longer (by the number
of reads from the cache) than when not using the cache.
Therefore, when using the cache, judgeInterval and its upper
bound should be set to smaller values than those when not
using the cache.

5. Experiments

Based on experiments using FARP, we now evaluate the
proposed method from two points of view. First, we check
whether FARP can maintain the read latency when the load
on the database is increased by increasing the number of
read/write processes per unit time. Second, we examine data
freshness for that time. We use Apache Cassandra [1] [4]
as the database management system.

In this experiment，we imitate clients by using the
YCSB [2]. YCSB, which is a benchmarking tool for
NoSQL, can specify the ratio of read/update, the access
distribution to the database, and the target value for pro-
cessing number per second. However, YCSB does not have a
function for measuring data freshness, although it does have
a function for aggregating latency. Therefore, we modified
the YCSB to measure data freshness.

In this experiment, we use the rate at which the latest
data are read as the measure of data freshness. It is calcu-
lated by

DataFreshness =
readCountOfTheMostRecentData

totalReadCount
The total read count can be specified by YCSB. Therefore,
to calculate data freshness by the above formula, it is
necessary to measure the number of reads of the latest data.
Accordingly, we modified YCSB to measure it. YCSB stores
the contents of writes, and sequentially checks whether there
is an inconsistency between the data read and data stored.

5.1. Experimental environments and parameters

Table 1 shows the machine configuration used in the
experiments. We used a solid–state drive (SSD) as the
storage device.

TABLE 1. SERVER CONFIGURATION FOR EXPERIMENTS

OS Ubuntu 12.04.3 LTS
CPU 2.40 GHz Xeon(R) E5620 × 2

Memory 8 GB RAM
SSD Crucial Real SSD C300 128 GB
Java Java SE 7 Update 4

TABLE 2. VALUE OF JUDGEINTERVAL

judgeInterval initial value upper limit
when using cache 10 1000

when not using cache 100 10000

The number of data records stored on one server was
ten million records. The capacity of one record was 1 KB
because one record had 10 columns and one column was
100 bytes. Therefore, the overall data size was 10 GB, which
is further increased by information of schema; thus, it was
impossible for all data to be stored in 8 GB memory.

In the experiments, from the workloads that YCSB
provides, we used the update–heavy workload whose ratio of
reads to writes is one to one. We used a Zipf distribution as
the access distribution to the database. The Zipf distribution
imitates the access distribution of an application in which
the access frequency for data is determined regardless of the
freshness of the data.

YCSB gradually increases the number of accesses to
database per second (throughput). In this way, we gradually
increase the load on the database. In the experiment, we
measured the average read latencies and data freshness for
each throughput.

We used LRU as the cache algorithm for FARP, and set
the cache size to be one million records. The initial value
and upper limit of judgeInterval were as shown in Table 2.

We set the target latencies for FARP to be 5, 10 and
15 ms. For comparison, we also tested the case of always
using cache, even when the latency was small and the case
of directly accessing the database without using FARP.

5.2. Experimental results

We experimented with one database node for Apache
Cassandra. Results for the update–heavy workload are
shown in Figures 1 and 2. Figure 1 shows read latencies,
and Figure 2 shows data freshness. Figure 1 shows that read
latencies were controlled to the target value. In figure 2, we
can see that data freshness was higher as the target value
of the latency increased. This is because, when the target
value is large, it is possible to further increase the rate of
access to the original data.

We also experimented on the read–heavy workload
whose ratio of reads to writes is ninety five to five, and we
confirmed that the tendencies in changes of read latencies
and data freshness were similar to the experimental results
on the update–heavy workload.

Proc. 3rd Int'l Conf. on Big Data and Smart Computing (BigComp 2016), pp.329-332, January 2016



5.3. Discussion

Data freshness began to decrease when the direct access
latencies began to exceed the target value. In other words,
the cache began to be used around that time. Even when the
load was increased in succession, read latencies were main-
tained at the target value, while data freshness decreased
as the sacrifice. From this result, although the load with
which the read latencies can be maintained at the target
value were limited, we can confirm that FARP, which is
implemented based on the proposed method, can adjust the
balance between read performance and data freshness.

5.3.1. Read Latencies. Until use of the cache began, that
is, while data freshness was at 100%, read latencies with
FARP were slightly greater than those for direct access in
both workloads. This was due to the communication delay
through FARP and the processing time of FARP itself.

The throughput with which read latencies could be main-
tained to the target value was limited. Since, in this imple-
mentation, FARP used memory to store data, the amount
of data that FARP could hold was smaller than the amount
of data stored in the database. In addition, when the cache
was not hit, FARP accesses the database to retrieve the data
to be returned to the client. For these reasons, as the load
increased, the cache miss ratio per unit time increased, and
the database access per unit time also increased. In other
words, even when the cache always used, there was still
a limit to the reduction of read accesses to the database.
As shown in Figures 1, read latencies increased to an
extent that is beyond the capacity of FARP to retain access
performance. This problem can be solved by increasing the
memory capacity used for the cache.

5.3.2. Data freshness. Data freshness decreased when the
load was high. This was because, when the load is high,
it is necessary to use the cache frequently to maintain read
latencies. In addition, when the target latency is low, the
cache must be accessed more frequently. Therefore, at low
target latencies, data freshness decreased.

Figure 1. Read latencies with update–heavy workload

Figure 2. Data freshness with update–heavy workload

6. Conclusions and future work

We have proposed a method for adjusting the balance
between access performance and data freshness according
to the load placed on the database, by controlling the fre-
quency of use of a cache. Based on the proposed method,
we designed and implemented a cache mechanism (FARP)
that ensures access performance can be maintained, and we
evaluated read latency and data freshness.

In future work, we intend to compare the proposed
method with a method that invalidates old data on a cache
based on expiration date. When the proposed cache switch-
ing method is used, it is possible to maintain an average
value for read latencies, but it is not possible to maintain
each individual read latency at or below a threshold. There-
fore, in future work, we intend to maintain read latency at
the 99 percentile by adjusting cache usage.

Acknowledgment

This work is supported by JSPS KAKENHI Grant Num-
bers 25700008 and 26540161.

References

[1] Apache Software Foundation: Apache Cassandra,
http://cassandra.apache.org/.

[2] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears.: Benchmarking Cloud Serving Systems with YCSB,
Proc. SOCC ’10, pp. 143–154, 2010.

[3] Douglas Terry, Vijayan Prabhakaran, Rama Kotla,
Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh.:
Consistency-based Service Level Agreements for Cloud Strage, Proc.
SOSP ’13, pp. 309–324, 2013.

[4] Avinash Lakshman, and Prashant Malik.: Cassandra - A Decentralized
Structured Storage System, Proc. LADIS ’09, 2009.

[5] Brad Fitzpatrick.: Distributed Caching with Memcached, Linux Jour-
nal, vol. 2004, no. 124, p. 5, 2004.

[6] Redis: Redis, http://redis.io/.

[7] Jure Petrovic.: Using Memcached for Data Distribution in Industrial
Environment, Proc. IEEE Computer Society, pp. 368–372, 2008.

Proc. 3rd Int'l Conf. on Big Data and Smart Computing (BigComp 2016), pp.329-332, January 2016




