
14-th IEEE International Conference on Peer-to-Peer Computing

Routing Table Construction Method Solely Based on
Query Flows for Structured Overlays

Yasuhiro Ando, Hiroya Nagao, Takehiro Miyao and Kazuyuki Shudo
Tokyo Institute of Technology

Abstract—In structured overlays, nodes forward a query hop
by hop to deliver it to the responsible node for the query. Each
node maintains its routing table and determines the next hop by
referring to the routing table. Each node has its node identifier
and determines which other nodes to be on its routing table based
on node distance, that is defined by difference of node identifiers
or the number of nodes between two nodes in identifier order.
In existing structured overlays, routing table construction and
maintenance based on node distance enable efficient lookup, that
is a small number of hop counts to the responsible node.

We found out that efficient lookup does not require node
distance in routing table construction and maintenance. As an
example, this paper presents Flow-based Flexible Routing Tables
(FFRT), a routing table construction method solely based on
query flows. In an FFRT-based overlay, a node calculates query
flows, that is the amount of queries forwarded to each node
on its routing table. And the node maintains its routing table
toward a state in which all nodes on the table have equal query
flows. FFRT also provides such a practical merit as it performs
efficient lookups though node and queries’ target identifiers are
distributed nonuniformly. The merit enables range query support.

I. INTRODUCTION

A structured overlay constructs an application-level network
and enables higher level services such as Distributed Hash
Table and message delivery. Nodes in an overlay forward a
query hop by hop to deliver it to the responsible node for the
query. Each node in an overlay maintains its routing table and
determines the next hop by referring to the routing table.

In existing structured overlays, routing tables are constructed
and maintained based on node distance. Each node has its own
node identifier (ID), that is a number or a set of numbers. Node
distance is defined by difference of the node IDs in Chord
[1], XOR of the node IDs in Kademlia [2], or the number
of other nodes between the nodes in ID order in Chord# [3].
A node determines which other nodes to be on its routing
table based on the node distances to them from itself. By
choosing the nodes along the rules prescribed by a structured
overlay, responsible node lookup is efficiently performed, in
other words, a query reaches the responsible node in a small
number of hops such as O(logN) hops with N nodes.

We found out that efficient lookup does not require node
distance in routing table construction and maintenance. This
paper presents Flow-based Flexible Routing Tables (FFRT),
a routing table construction method and FFRT-Chord, an
FFRT-based structured overlay. FFRT-based overlays maintain
routing tables solely based on query flows without considering
node distance. A query flow is defined as the amount of
queries forwarded between two nodes. A node in an FFRT-
based overlay calculates query flows for all nodes on its routing
table. The node refines its routing table toward a state in which

all nodes on the table have equal query flows. FFRT is an
application of Flexible Routing Tables (FRT) [4]. FFRT defines
a total order ≤FL based on query flows instead of a total order
≤ID that FRT-based overlays define based on node IDs. FFRT
inherits features of FRT including extensibility and arbitrary
routing table size.

FFRT-Chord is an FFRT-based overlay, which adopts Chord-
style ID space and distance. The ID space and distance are
just used to determine the responsible node for the target
ID of a query, and not used for routing table maintenance.
Experimental results showed that FFRT-Chord achieved higher
efficiency with nonuniform target ID distributions and nonuni-
form node ID distributions. Its efficiency is comparable to
existing structured overlays even with uniform node ID and
target ID distributions. Here efficiency means smaller number
of hops, in other words, shorter path length.

This paper is organized as follows. Section II presents prior
knowledge by introducing related work. Section III describes
FFRT and FFRT-Chord. Section IV demonstrates the properties
of FFRT-Chord including efficient lookups with nonuniform
target ID and node ID distributions. In Section V, we summa-
rize our contributions.

II. RELATED WORK
A. Chord

Distributed Hash Table (DHT) is a higher level service
constructed on a structured overlay. It stores key-value pairs
on decentralized nodes. Both nodes and data have their IDs.
The responsible node, a node that holds a key-value pair, is
determined according to the node and data IDs.

Chord [1] is a DHT, in which IDs are represented as a ring
of numbers from 0 to 2m − 1. A node ID is m bits long and
determined by hashing the node’s IP address. A data ID is
generated from a key by a hashing function. A data item is
stored at the responsible node, whose ID is equal to the data
ID or immediately follows it.

ID distance plays an important role in Chord. A routing table
is maintained based on it and then a query is routed according
to it. ID distance from x to y, d(x, y) is defined as follows.

Definition 1:

dchord(x, y) =

{
y − x (x < y)
2m (x = y)
y − x+ 2m (x > y)

(1)

Chord achieves O(logN)-hop lookup performance with N
nodes.

B. Flexible Routing Tables
Flexible Routing Tables (FRT) [4] is a method of design-

ing routing algorithms for structured overlays. An algorithm

978-1-4799-6201-3/14/$31.00 c©2014 IEEE

Proc. 14th IEEE Int'l Conf. on Peer-to-Peer Computing (IEEE P2P'14), September 2014

14-th IEEE International Conference on Peer-to-Peer Computing

designer can design a structured overlay by defining a total
order ≤ID on the set of all patterns of a routing table and
sticky entries. FRT does not suppose a specific ID space and
the designer chooses an ID space, for example a Chord-style
ring or a Kademlia-style XOR space. A node in an FRT-based
structured overlay repeatedly refines its routing table according
the order by entry learning and entry filtering.

1) FRT-Chord: FRT-Chord [4] is an FRT-based structured
overlay. ID space and thus responsible nodes of FRT-Chord
are the same as Chord. In this section, we introduce FRT by
describing how FRT-Chord is designed based on FRT.

Each node maintains a single unified routing table E unlike
Chord, that has three parts as a successor list, a predecessor
and a finger table. A node can dynamically change the size of
its routing table because FRT-Chord inherits the property from
FRT. A routing table E at a node s is a set of entries {ei}
which are ordered clockwise from s. Each entry ei consists of
a node ID ei.id and an IP address ei.address. Note that ei is
referred to as ei.id afterward. By this definition e1 and e|E|
correspond to a successor and a predecessor.

2) Total order ≤ID on Routing Table Set: FRT-Chord
defines a total order ≤ID based on node ID distance. A
node refines its routing table according to the total order.
FRT-Chord defines reduction ratio of a query forwarding as
d(E.forward(t), t)/d(s, t), where E.forward(t) is an entry
on the routing table E, to which a query for target ID t is
forwarded by node s. A reduction ratio expresses how close
to t the entry E.forward(t) is in comparison to s. In case the
target is in the interval between ei and ei+1 s forwards a query
to ei. In the case the reduction ratio takes its worst and largest
value when t = ei+1. The worst-case reduction ratio ri(E) of
the forwarding to a node ei is defined as follows:

Definition 2:

ri(E) =
d(ei, ei+1)

d(s, ei+1)
(i = 1, 2, ..., |E| − 1)

Let {r(i)(E)} be the list of reduction ratios arranged in
descending order. Based on {r(i)(E)}, the total order on the
set of all patterns of a routing table is defined as follows.

Definition 3:

E ≤ID F ⇔ {r(i)(E)} ≤dic {r(i)(F)} (2)

where ≤dic is the lexicographical order.
3) Sticky Entry: Sticky entries are routing table entries that

are not removed by entry filtering. An algorithm designer de-
fines sticky entries to guarantee reachability to the responsible
node. In FRT-Chord, sticky entries are a successor list and a
predecessor as in Chord.

4) Entry Learning: In FRT-based overlays, a node inserts
other nodes into its routing table whenever the node is aware of
them. A node notices the others passively by communications
for lookups and it can also perform active learning lookups.

5) Entry Filtering: When the number of entries |E| exceeds
the size of the routing table L, A node removes an entry.
A node refine its routing table by choosing a removed entry
according to the total order ≤ID.

By calculating a canonical spacing SE
i for each entry ei in

E, the removed entry can be found efficiently.

Definition 4:

SE
i = log

d(s, ei+1)

d(s, ei)
(3)

Steps in entry filtering are as follows. Let C be the set of
candidates for a removed entry.

1) Put all entries in E into C
2) Remove sticky entries from C
3) Select the entry ei in C that minimizes SE

i−1 + SE
i .

4) Remove e from E.
By sorting SE

i−1+SE
i in ascending order, the removed entry

can be found efficiently.

III. FLOW-BASED FLEXIBLE ROUTING TABLES

Existing structured overlays [1]–[3] achieve efficient lookup
by maintaining routing tables based on node distance. By
contrast, we found out that efficient lookup does not require
node distance based routing table maintenance. As an example,
we present Flow-based Flexible Routing Tables (FFRT), a
routing table construction method and FFRT-Chord, an FFRT-
based structured overlay. Their routing table maintenance is
solely based on query flows without considering node distance.

FFRT is an application of Flexible Routing Table (FRT)
(Section II-B). FFRT defines a total order ≤FL based on query
flows in contrast to FRT-based overlays that define a total
order based on node IDs. A query flow is defined as the
amount of queries forwarded between two nodes. A node in
an FFRT-based overlay calculates query flows for all entries
on its routing table. The total order is defined as uniformity
of query flows of all the entries. Each node refines its routing
table toward a state in which all entries on the table have equal
query flows. Each node counts the number of queries that it
forwards to other nodes regardless of whether the query is
originated by the node itself or not. A node calculates query
flows based on the counts.

FFRT defines the total order though FRT itself does not
define a total order. An FRT-based overlay defines a total order.
An algorithm designer designs a structured overlay based on
FFRT by defining ID distance and sticky entries.

FFRT inherits features of FRT including extensibility and
arbitrary routing table size. Proximity-aware FRT (PFRT) [5]
and Grouped FRT (GFRT) [4] are examples of extensions to
FRT-based overlays. PFRT is an extension to consider network
proximity and GFRT is for node groups. They and other
extensions can be combined with all FRT-based and FFRT-
based overlays. Arbitrary routing table size means that the sizes
of routing tables are not fixed by a structured overlay. They
can vary per node and change as time goes on.

FFRT is not just an example of non-node-distance-based
structured overlays, but also provides a practical merit. FFRT-
based overlays perform efficient lookups though node IDs and
queries’ target IDs are distributed nonuniformly because they
maintain routing tables solely based on query flows. DHT
introduces such nonuniformity. Queries’ target IDs, that are
data IDs in a DHT, are distributed nonuniformly when access
frequencies of data are not uniform. For example, in file
sharing systems, content popularity is biased. Range queries

2

Proc. 14th IEEE Int'l Conf. on Peer-to-Peer Computing (IEEE P2P'14), September 2014

14-th IEEE International Conference on Peer-to-Peer Computing

s ei ei+1

fei (E) = 3

Fig. 1. An example of query flow in FFRT-Chord.

also lead to a nonuniform data distribution. Range queries
require assigning continuous data IDs with continuous keys
to achieve efficient lookups. Otherwise continuous keys are
distributed to numerous nodes, that a range query has to
involve. Such a continuous assignment leads to a nonuniform
data ID distribution. With nonuniform data ID distributions,
load imbalance is a problem. Virtual node is one of solutions,
but there is another promising solution, that is to make a node
ID distribution follow a data ID distribution. Node IDs can
be adjusted in advance or by leave and join of nodes. Such
adjustment leads to a nonuniform node ID distribution.

A. Total Order ≤FL Based on Query Flows
We define query flow as a basis of the definition of total

order ≤FL. A node in an FFRT-based overlay keeps its query
history Q with the maximum size of the history H . The history
holds the target IDs of queries that the node forwarded to other
nodes, not limited to nodes currently on its routing table. Note
that q ∈ Q is referred to as a target ID q.id.

If an ID distance is capable of greedy routing, we can define
query flow for a routing table entry. Capability of greedy
routing means that the ID distance enables a node to determine
uniquely the routing table entry to forward a query.

Let E be the routing table of s, d(x, y) be an ID distance
from ID x to ID y and fe(E) be the query flow for an entry
e ∈ E. fe(E) is the amount of queries that e is responsible for
in the query history Q. When an entry e ∈ E is responsible
for q ∈ Q, s would forward q to e, that is, following formula
holds.

d(e, q) < d(e′, q), ∀e′ ∈ E \ {e} (4)

We define query flow fe(E) as follows.
Definition 5:

fe(E) = |{q ∈ Q | d(e, q) < d(e′, q), ∀e′ ∈ E \ {e}}| (5)

Fig. 1 shows an example of a query flow in FFRT-Chord,
that is described in Section III-D. In the figure, fei(E) is 3
because the number of queries to be forwarded to ei is 3. Note
that ID distance of FFRT-Chord is the same as Chord.

We define total order ≤FL on query flow as follows.
Definition 6:

E ≤FL E′ ⇐⇒ V(FE) ≤ V(FE′) (6)

V(FE) is the variance of query flows for entries in a routing
table E. We define V(FE) as follows.

V(FE) =
∑
e∈E

(fe(E)− ave)2 (7)

ave = |Q|/|E| (8)

B. Entry Learning
Entry learning is the same as FRT that is described in

Section II-B4.

C. Entry Filtering
When the number of entries |E| exceeds the size of a routing

table L, an FFRT-based structured overlay removes one of
the entries to keep |E| ≤ L. The removed node is selected
according to the order ≤FL. This operation is called entry
filtering inherited from FRT.

We define removal preference for an entry to determine
which node to be removed. The following ve(E) means how
much the variance of the routing table decreases by removing
an entry e.

Definition 7:

ve(E) = V(FE)−V(FE\{e}) (9)

Steps in entry filtering in FFRT are as follows. Let C be the
set of candidates for a removed entry.

1) Put all entries in E into C.
2) Remove sticky entries from C.
3) Select the entry e in C that maximizes removal prefer-

ence ve(E). If there are multiple such entries, select the
entry e of which query flow fe(E) is the lowest among
them. If there are still multiple such entries, select the
entry e of which d(s, e) is largest among them.

4) Remove e from E.
The following theorem holds. It means the routing table

ascends according to the total order ≤FL by the entry filtering.
Theorem 1: Let E \ {e∗} be a routing table filtered by

removing e∗. For any e which is not a sticky entry,

E \ {e∗} ≤FL E \ {e}. (10)

Proof: For e ∈ E,

V(FE\{e}) = V(FE)− ve(E) (11)

holds. V(FE) is 0 or larger. Because of them, the larger ve(E)
gives the smaller V(FE\{e}). Therefore,

ve∗(E) ≥ ve(E) ⇐⇒ V(FE\{e∗}) ≤ V(FE\{e}) (12)
⇐⇒ E \ {e∗} ≤FL E \ {e} (13)

If a node has few queries in its query history, it may be
better to select a removed node based on node distance like
an FRT-based overlay. But, especially without active learning
lookups, in case the routing table is filled, the query history
should have queries much the same.

D. FFRT-Chord
FFRT-Chord is an FFRT-based structured overlay. FFRT-

Chord adopts the ID space and the ID distance of Chord, that is
dchord(x, y) (Section II-A). The ID space and ID distance are
just used to determine the responsible node and not used for
routing table maintenance. Responsible nodes in FFRT-Chord
are the same as Chord.

Sticky entries are the same as FRT-Chord. But, entry filtering
is different from existing overlays. It is carried out according
to query-flow-based total order ≤FL.

A routing table E = {ei} satisfies i < j ⇒ dchord(s, ei) <
dchord(s, ej). By this definition e1 and e|E| correspond to a
successor and a predecessor as in Chord.

3

Proc. 14th IEEE Int'l Conf. on Peer-to-Peer Computing (IEEE P2P'14), September 2014

14-th IEEE International Conference on Peer-to-Peer Computing

fei (E) =10 fei+1 (E) = 5fei−1 (E) = 7

s ei−1 ei ei+1

s ei−1 ei+1

fei−1 (′E) =17 fei+1 (′E) = 5

Fig. 2. Change of query flow in FFRT-Chord

1) Entry Filtering: We adopt the following removal prefer-
ence to simplify the calculation.

Definition 8:

v′e(E) =
∑
e′∈E

(fe′(E) − ave)2 −V(FE\{e}) (14)

ave = |Q|/L (15)

v′e(E) is a variant of ve(E) in Definition 7 and they are not the
same. The number of routing table entries to calculate V(FE)
is L, not the precise number L+ 1. But v′e(E) can select the
removed node correctly. The following theorem holds.

Theorem 2: Let E \ {e∗} be a routing table filtered by
removing e∗. For any e which is not a sticky entry,

E \ {e∗} ≤FL E \ {e}. (16)

Proof: For e ∈ E,

V(FE\{e}) =
∑
e′∈E

(fe′(E)− ave)2 − ve(E) (17)

holds. V(FE) and the first term of the right side of the formula
are 0 or larger. Because of them, the larger ve(E) gives the
smaller V(FE\{e}). Therefore,

ve∗(E) ≥ ve(E) ⇐⇒ V(FE\{e∗}) ≤ V(FE\{e}) (18)
⇐⇒ E \ {e∗} ≤FL E \ {e} (19)

We can simplify v′ei(E) by the fact that a node removal
affects fe(E) of just one node. In Fig. 2, an entry ei is removed
from a routing table E and only fei−1(E) changes from 7 to
17.

Theorem 3:

v′ei(E) = −2fei(E)fei−1(E) + ave2 (20)

Proof: When an entry ei is removed from a routing table
E, only query flow fei−1(E) changes. Therefore,

fej (E \ {ei}) =
⎧⎨
⎩

fej (E) (1 ≤ j ≤ i− 2)
fei−1(E) + fei(E) (j = i− 1)
fej+1(E) (i ≤ j ≤ |E| − 1)

By Definition 8,

v′e(E) = (fei−1(E)− ave)2 − (fei−1(E) + fei(E)− ave)2

+(fe(E)− ave)2 (21)
= −2fei(E)fei−1(E) + ave2. (22)

This v′e(E) enables efficient entry filtering as follows.
1) put all entries in E into C.
2) Remove sticky entries from C.
3) Select the entry e in C that minimizes fei(E)fei−1 (E).

If there are multiple such entries, select the entry e of
which query flow fe(E) is the lowest among them. If
there are still multiple such entries, select the entry e
of which d(s, e) is largest among them.

4) Remove e from E.

IV. EVALUATION

This section demonstrates the following properties of path
length of FFRT-Chord compared with existing structured over-
lays.
• With uniform node ID and target ID distributions, com-

parable.
• With nonuniform target ID distributions, shorter.
• With nonuniform node ID distributions, shorter.

Shorter path length, in other words, smaller number of hops
indicates that the structured overlay is efficient. On real net-
works, efficiency involves network proximity as well not only
path length. Evaluation of FFRT combined with Proximity-
aware FRT (PFRT) [5] is part of future work.

In the experiments, we compare FFRT-Chord with FRT-
Chord described in Section II-B1. FRT-Chord shows shorter
path length than Chord with the moderate routing table sizes,
that is 20 or larger [4]. Therefore, if it is shorter than
FRT-Chord, it is shorter than Chord. FRT-Chord and Chord
maintains routing tables based on node ID difference and they
do not adapt well to nonuniform node ID distributions. Future
work includes comparison with overlays for nonuniform node
ID distributions such as FRT-Chord# and Chord#.

We implemented FFRT-Chord on Overlay Weaver [6], [7],
an overlay construction toolkit and conducted the experiments
with the toolkit. The routing table size L is 20, the successor
list size is 4 and the history size H is 500 in all the
experiments. The lookup style is iterative in all the experiments
but it does not affect the results.

A. Uniform Distributions

After N nodes join an overlay, each node sends a query 200
times in random order where each query is sent to a randomly
chosen target ID (N = 102, 103, and 104).

Fig. 3 shows the average and the 99th percentiles of path
lengths for the last N queries. The average path lengths in
FFRT-Chord were comparable to ones in FRT-Chord. In cases
of N = 102 and 103 FFRT-Chord showed shorter average path
lengths. In case of N = 104 FFRT-Chord showed a longer
average path length, but the rate of the increase was 0.7%,
that is small. The 99th percentiles of the path lengths in FFRT-
Chord were equal to ones in FRT-Chord.

These results indicate that FFRT-Chord is comparable to
FRT-Chord in path length with uniform node ID and target ID
distributions.

4

Proc. 14th IEEE Int'l Conf. on Peer-to-Peer Computing (IEEE P2P'14), September 2014

14-th IEEE International Conference on Peer-to-Peer Computing

Fig. 3. Path lengths with uniform node ID and target ID distributions.

B. Nonuniform Target ID Distributions
After 10000 nodes join an overlay, each node sends a query

200 times in random order where each query is sent to target
IDs distributed according to Zipf distributions (α = 0.7, 0.9,
and 1.1).

Fig. 4 shows the average and the 99th percentiles of path
lengths for the last 10000 queries. In cases of α = 0.7 and 0.9
FFRT-Chord showed shorter path lengths. In case of α = 1.1
the average path length in FFRT-Chord was 22% shorter than
one in FRT-Chord, but the 99th percentile of the path lengths
in FFRT-Chord was 1 longer than one in FRT-Chord.

These results indicate that FFRT-Chord adapts to nonuni-
form target ID distributions and it achieves efficient lookups
with such applications that involve nonuniform target ID
distributions, for example range queries. With heavily biased
target ID distributions, path lengths to a dense area in the ID
space tend to be short but path lengths to a sparse area tend to
be long. As a result, it achieves shorter average path lengths.

C. Nonuniform Node ID Distributions
IDs distributed according to Zipf distributions (α = 0.7,

0.9, and 1.1) are assigned to 10000 nodes. After the 10000
nodes join an overlay, each node sends a query 200 times in
random order where each query is sent to target IDs distributed
according to the same distribution as node IDs. This setting
represents a situation in which load imbalance (Section III)
has been mitigated by making the node ID distribution follow
the nonuniform target ID distribution.

Fig. 5 shows the average and the 99th percentiles of path
lengths for the last 10000 queries. FFRT-Chord showed shorter
path lengths than FRT-Chord in all the cases. FFRT-Chord
also showed shorter path lengths with the nonuniform node
ID distributions than with the uniform node ID distribution.
By contrast, FRT-Chord showed longer path lengths with
nonuniform node ID distributions except the average path
length with α = 1.1, that is a relatively heavily biased
distribution.

These results indicate that FFRT-Chord adapts to nonuni-
form node ID distributions and it achieves efficient lookups
with node ID adjustment for load balance.

V. CONCLUSION
Existing structured overlays have to consider node distance

when constructing and maintaining routing tables. Otherwise
they cannot perform efficient lookups. It has been common

Fig. 4. Path lengths with nonuniform target ID distributions.

Fig. 5. Path lengths with nonuniform node ID distributions.

knowledge. But we found out that it is not necessary to con-
sider node distance for efficient lookups. Flow-based Flexible
Routing Tables (FFRT), a routing table construction method is
an evidence of the fact. FFRT-Chord, an FFRT-based overlay
performs efficient lookups by maintaining routing tables solely
based on query flows without considering node distance. FFRT-
Chord shows shorter path lengths at least on average even with
nonuniform target ID and node ID distributions.

Future work includes theoretical analysis on path length
while the analysis shown in Section IV is experimental.

ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Num-

bers 25700008 and 26540161.
REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17–32, Feb. 2003.

[2] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the XOR metric,” in Proc. IPTPS’02, 2002, pp. 53–65.

[3] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer, “Range
queries in trie-structured overlays,” in Proc. IEEE P2P’05, 2005, pp.
57–66.

[4] H. Nagao and K. Shudo, “Flexible routing tables: Designing routing
algorithms for overlays based on a total order on a routing table set,” in
Proc. IEEE P2P’11, 2011, pp. 72–81.

[5] T. Miyao, H. Nagao, and K. Shudo, “A method for designing proximity-
aware routing algorithms for structured overlays,” in Proc. IEEE
ISCC’13, 2013.

[6] K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay Weaver: An overlay
construction toolkit,” Computer Communications, vol. 31, no. 2, pp. 402–
412, 2008.

[7] K. Shudo, Overlay Weaver: An Overlay Construction Toolkit,
http://overlayweaver.sourceforge.net/.

5

Proc. 14th IEEE Int'l Conf. on Peer-to-Peer Computing (IEEE P2P'14), September 2014

