June 2014

June 2014

South
So

A Structured Overlay

for Non-uniform Node Identifier Distribution Based on Flexible Routing Tables

Takehiro Miyao, Hiroya Nagao, **Kazuyuki Shudo**

Tokyo Tech

Background: Structured Overlay

- An application-level network
 - routes a query to the responsible node.

- enables scalable data store and messaging.

• e.g. Distributed Hash Tables (DHT)

Contribution

- A routing algorithm FRT-Chord#
 - supports non-uniform node ID distribution.
 - Range queries require it.
 - by **Chord**# [Schütt 2008] -inspired routing table maintenance.
 - has features existing overlays do not provide.
 - Extensibility, arbitrary routing table size, and onehop property.
 - by Flexible Routing Tables (FRT) [Nagao 2011] -based design.

Non-uniform node ID distribution

- Traditional structured overlays
 - Node and data ID are generated with a hash function such as SHA-1.
 - Nodes in a routing table are selected based on node IDs.

- To support range queries
 - Data are not hashed. Otherwise a query involves almost all nodes.

Non-uniform node ID distribution

- To support range queries
 - 1) Virtual nodes
 - 2) Making a node ID distribution follow a data ID distribution

But a non-uniform node ID distribution leads
 larger hop numbers / longer path length.

Non-uniform node ID distribution

- Node order based routing table maintenance
 - Chord# [Schütt 2008] does it.
 - cf. Node ID based
 - Efficient lookups = smaller hop numbers / shorter path length by having enough number of pointers to dense areas.

Our algorithm FRT-Chord# adopts it.
 We designed a <u>Flexible Routing Table (FRT)</u> based algorithm that perform it.

Flexible Routing Tables (FRT)

[Nagao 2011]

A unified framework for structured overlays.

A methodology to design a routing algorithm

Flexible Routing Tables (FRT)

[Nagao 2011]

- Declarative algorithm definition and common actions are separated.
- A routing table is just a list of entries.
- Algorithm definition an algorithm designer provides
 - $-\leq_{RT}$ A total order on the set of all routing table patterns Better is higher. "Better" means smaller hop numbers / shorter path length.
 - Sticky entries
 Routing table entries not to be removed from the table.
 E.g. successor in Chord
- Common actions FRT provides
 - Entry learning A node notices another node and put it to the table.
 - Entry filtering A table overflows, an entry is selected and removed.

Flexible Routing Tables (FRT)

[Nagao 2011]

- FRT-based algorithms
 Features of FRT
 - FRT-Chord [Nagao 2011]
 - FRT-2-Chord [Ando 2014]
 - FRT-XOR, that borrows ID space and distance from Kademlia
 - FRT-Chord# (this paper)
- Extensions
 - Proximity-aware FRT (PFRT) [Miyao 2013]
 - Grouped FRT (GFRT)
 - Virtual Node Fusion (VNF)

- Extensibility
 - Algorithms and extensions can be combined arbitrarily.
- Arbitrary routing table size
- One-hop property
 - A query reaches the responsible node in one-hop if # of nodes ≤ the routing table size.
 - Note that FRT-Chord# itself does not perform one-hop lookup, but 2-hop, that is lowest and the same as Chord and Chord#.
- FRT-Chord# achieves efficient lookups with non-uniform ID distribution while providing the features of FRT.

Evaluation

- Goals: to confirm that
 - Path length does not get longer even with non-uniform node ID distributions
 - FRT-Chord# retains features of FRT
- Compared with Chord and FRT-Chord
- Configuration
 - Routing table size: 16, determined to be fair with Chord
 - Distributed environment emulator of Overlay Weaver 0.10.1
 - Java SE 6 Update 22
 - Linux 2.6.35

Node ID distributions and path length

Path lengths do not depend on node ID distributions.

Node ID distributions and path length

• Zipf distribution with $\alpha = 0.95$

FRT-Chord# shows shorter path length.

Node ID distributions and path length

Uniform distribution

Comparable with existing algorithms.

Arbitrary routing table size

- Larger tables show shorter path lengths.
- FRT-Chord# retains this feature: arbitrary ...

Summary

- FRT-Chord# is a routing algorithm for structured overlays
 - supports non-uniform node ID distributions
 - Range queries require this feature.
 - designed along Flexible Routing Tables (FRT)
 - Features: extensibility, arbitrary routing table size, and one-hop property