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Abstract—In many structured overlays, nodes strictly maintain
their routing tables using node identifiers. However, building
routing tables while taking account of the physical network is dif-
ficult. We propose proximity-aware flexible routing tables (PFRT)
in this paper as a method to systematically design proximity-
aware routing algorithms for structured overlays. PFRT was
developed by extending the flexible routing tables (FRT) method
such that network proximity is considered. Routing tables in FRT-
and PFRT-based algorithms are updated according to the order
of the set of all routing table patterns. FRT-based algorithms
define a total order based on node identifiers, whereas PFRT-
based algorithms define two total orders based on node identifiers
and network proximity. Because PFRT is a simple extension of
FRT, PFRT-based algorithms also have many of the advantageous
features of FRT. We extended Chord to design PFRT-Chord,
which is a PFRT-based algorithm. Experimental results showed
that PFRT-Chord preserves the expected FRT-derived properties
and it could take account of network proximity.

I. INTRODUCTION

Today, many peer-to-peer (P2P) systems are available for
use over the Internet, such as Gnutella, BitTorrent, and Skype.
These P2P systems have several important characteristics,
including high scalability and fault tolerance. A P2P system
operates by building a virtual network, called an overlay
network, over a physical network at the application layer. The
overlay network is a directed graph in which nodes merely
maintain pointers to neighbor nodes. Therefore, P2P systems
are decentralized.

Although the topology of overlay networks can be arbitrary,
they are classified into two types: unstructured and structured.
The type of overlay network affects how a request message
reaches its destination node. In unstructured overlay networks,
the message is diffused like flooding to ensure that it arrives
at its destination node. In structured overlay networks, the
arrangement of nodes is systematic, and a route from a source
to destination node is determined under a logical rule in order
to reduce route lengths and traffic volume.

A distributed hash table (DHT) is a P2P technology that
enables management of an associative array by numerous
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computers. Many routing algorithms for structured overlays
have been proposed for DHTs [1]–[6].

Often routing algorithms do not consider the physical
network. However, nodes are located worldwide in real P2P
systems, and so their network proximity—measured in terms
of communication latency, bandwidth, jitter, and so on—is not
uniform. Therefore, the overlay network is built as a weighted
graph in which each weight represents the network proximity
between two nodes.

Rules in structured overlays usually employ node identifiers.
Since these identifiers take random values, they determine the
route from a source to destination node without considering
network proximity. Consequently, a chosen route typically
includes many edges with high weights. In contrast, if the
rule utilizes not only the node identifiers but also network
proximities, the routing algorithm can select routes in which
the weights of the edges are low.

There are three policies to consider network proximity in
structured overlays [7]: proximity neighbor selection (PNS)
[8]–[11], proximity route selection (PRS) [12], [13], and
proximity identifier selection (PIS) [9], [11]. In PNS, each
node selects its neighbors based on network proximity. In
PRS, the selection of an edge for a route from a source to
destination node is dependent on network proximity. In PIS,
a node identifier is determined based on network proximity.
These methods are, in general, independent of one another;
that is, a structured overlay based on one method can also
consider network proximity by another method [9], [11].

Various proximity-aware routing algorithms have been pro-
posed for structured overlays [8]–[13]. However, they are
so ad-hoc extensions that each of them depends on specific
routing algorithms. An extension targets only one or a few
algorithms. In LPRS-Chord [8], which is one of proximity-
aware routing algorithms, LPRS is nearly independent from
a base algorithm (e.g., Chord [1]), but it needs modifica-
tion to be applied to Pastry [4] and Tapestry [6]. Thus we
propose Proximity-aware Flexible Routing Tables (PFRT), a
methodology to design proximity-aware routing algorithms,
that introduces network proximity into Flexible Routing Tables
(FRT) [14]. It does PNS.

FRT is a methodology to design a routing algorithm for
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a structured overlay. An FRT-based algorithm such as FRT-
Chord [14], FRT-2-Chord [15] and one based on Kademlia
[2] inherits the identifier spaces of its ancestor (e.g., Chord
[1]) and defines a total order ≤ID on the set of all routing
table patterns based on node identifiers. And it works along
the procedure defined by FRT.

To define a PFRT-based algorithm, algorithm designers de-
fine two total orders on the the set of all routing table patterns:
an identifier-based order ≤ID, and a proximity-based order
≤PR. PFRT then maintains routing tables according to these
orders. Therefore, PFRT facilitates designers to systematically
design proximity-aware routing algorithms.

Because PFRT is a simple extension of FRT, it keeps bene-
fits of FRT such as supporting various identifier spaces, com-
patibility with other extensions. Existing routing algorithms
and extensions can be redesigned based on FRT and work in
consistent with PFRT. The extension for network proximity by
PFRT is independent from properties of the existing algorithms
such as an identifier space because the two total orders are
orthogonal. For example, a PFRT-based algorithm adopting
Kademlia’s identifier space can incorporate with an extension
that takes account of node’s lifetime. Another benefit of FRT
that PFRT inherits is broadened application domains.

To this end, we have designed the PFRT-based algorithm,
PFRT-Chord, as an extension of Chord. Since PFRT-based
algorithms can consider several metrics for network prox-
imity, we select communication latency to measure network
proximity in this work. Our simulation results show that the
average routing latency in PFRT-Chord is less than that in not
only Chord but also LPRS-Chord, another proximity-aware
routing algorithm. In addition, our results show that PFRT-
Chord inherits the beneficial features of FRT.

II. RELATED WORK

A. Chord

Chord [1] is one of the most well-known DHT algorithms.
DHT manages an associative array by using a large number
of computers. A datum consisting of a key and value pair
is stored in a computer selected by a routing algorithm. The
computer is then called the responsible node of the datum.
When putting or getting data, a request message is sent to the
responsible node of each datum via the other nodes.

Data placement in Chord is managed by consistent hashing
(Fig. 1) [16], which assigns an m-bit identifier to a node by
hashing the node’s IP address and to a datum by hashing the
datum’s key. The identifier space is like a ring. The identifier
distance d(x, y) from identifiers x and y is the clockwise
distance in the ring:

d(x, y) =

{
y − x, x < y,

y − x+ 2m, y ≤ x.
(1)

The first node that an identifier reaches while progressing in
a clockwise direction is called the successor node, and the
responsible node of a datum is the successor node of the
datum’s identifier.
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Fig. 1. Consistent hashing.

To build a structured overlay using Chord, each node
manages the set of its neighbor nodes in the overlay network.
This set is called a routing table. Each entry in a routing table
holds a node’s identifier and its IP address, but an entry is
sometimes expressed as the node which is pointed to by the
entry in this paper.

Routing tables in Chord consist of three parts: a successor
list, predecessor, and finger table. The successor list of a node
contains a certain number u closest nodes from the node in
the identifier space. The successor list is used for reaching
destination nodes. The predecessor contains the farthest node
from the node in the identifier space. The finger table is used
to decrease route lengths. The ith entry (i = 0, 1, 2, . . .m−1)
of the finger table for a node n contains the successor node of
the identifier n.id+2i. Thus, if N is the number of nodes, then
the number of entries in a finger table is about logN . Chord
strictly manages these three tables based on node identifiers,
and so route lengths are O(logN)-hops.

When putting or getting a datum, a request message arrives
at the destination node by greedy routing, which selects a for-
warding node from the routing table as follows. The message
is repeatedly forwarded from each node to the closest neighbor
to the datum’s identifier in the node’s routing table. Once the
message arrives at the predecessor p of the destination node,
the message is forwarded to the destination node by using p’s
successor list.

Routing algorithms that use iterative or recursive routing
can be implemented. In iterative routing, a source node sends
a message to all forwarding nodes. In recursive routing, a
forwarding node sends a message to the next forwarding node.
Although iterative routing detects failure in a forwarding node,
recursive routing requires only about half of the routing latency
of iterative routing because there is no need to wait for a reply
message.

Nodes often join and leave P2P networks, and so each
node must meticulously maintain its routing table through a
stabilization protocol. A stabilization protocol consists of four
functions: join, stabilize, notify, and fix fingers. When a node
is added in Chord, it executes a join function to search for its
successors. All nodes periodically execute stabilize functions
to search for their current successors. When a node finds a
new successor, the node executes a notify function to instruct
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the successor to update its predecessor. All nodes periodically
execute a fix fingers function to search for the current rth entry
in its finger table (where r is a random number).

B. Proximity-aware Routing Algorithms

Various proximity-aware routing algorithms, such as LPRS-
Chord [8], AChord [9], Quasi-Chord [10], have been proposed
for structured overlays. However, they are so ad-hoc extensions
that each of them depends on specific routing algorithms. An
extension targets only one or a few algorithms. In LPRS-
Chord, LPRS [8] is nearly independent from a base algorithm
(e.g., Chord), but it needs modification to be applied to Pastry
[4] and Tapestry [6]. Besides, it is difficult to introduce another
extension considering other view points such as node lifetime
into them. In contrast to them, PFRT is orthogonal to base
algorithms and other extensions.

LPRS-Chord is a proximity-aware routing algorithm based
on PNS, and is an extension of Chord. Therefore, data place-
ment in LPRS-Chord is managed by consistent hashing, and it
employs a greedy routing policy. The main difference between
LPRS-Chord and Chord is the method of building routing
tables. Routing tables in LPRS-Chord are maintained based
on network proximity.

LPRS-Chord utilizes the same successor list and predeces-
sor as used by Chord. However, the ith entry in the finger table
of a node n is the node in [n + 2i, n + 2i+1) such that the
communication latency between the node and n is minimal.
Therefore, the number of entries in a routing table in LPRS-
Chord equals that in Chord.

To search for the ith entry, n randomly selects a few iden-
tifiers in [n+ 2i, n+ 2i+1) and measures the communication
latencies between itself and the successors of these identifiers.
Because the nodes in Chord periodically execute the fix fingers
function, whereas the nodes in LPRS-Chord measure commu-
nication latencies for only a few nodes, searching for the ith
entry in LPRS-Chord requires slightly heavier traffic than that
in Chord.

C. FRT-Chord

FRT [14] is a method of designing routing algorithms for
structured overlays. FRT-based algorithms inherit the identifier
spaces and distances utilized by existing routing algorithms, as
well as gaining the advantageous features of FRT, compatibil-
ity with other extensions and broadened application domains.

FRT-Chord [14] is an FRT-based algorithm based on Chord,
and thus consistent hashing and greedy routing are employed.
However, a node n in FRT-Chord maintains only a single
routing table E containing entries ei (i = 1, 2, . . . |E|),
which are sorted in ascending order according to the identifier
distances from n (i < j ⇒ d(n, ei) < d(n, ej)). Thus,
{ei}i=1,2,...u is the successor list of n, where e1 is n’s
successor and u is the capacity of successor list, and e|E| is
its predecessor. Since routing tables in FRT-based algorithms
are maintained by using a total order ≤ID on the set of all
routing table patterns, designers need to define ≤ID.
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1) Total Order on Routing Table Set: Routing tables are
updated according to ≤ID, which is a total order on the set
E of all routing table patterns. E ≤ID F then expresses that
routing table E is better than F based on the node identifiers.
≤ID in FRT-Chord is defined as follows.

A node n calculates the worst-case reduction ratio ri(E)
(Fig. 2) of a forwarding to a node ei, other than its predecessor.
A reduction ratio is the fraction that the remaining identifier
distance is reduced by when n forwards a message to each
entry ei:

ri(E) =
d(ei, ei+1)

d(n, ei+1)
(i = 1, 2, . . . |E| − 1). (2)

Let {r(i)(E)} be the list in which ei are ranked in descend-
ing order by {ri(E)}. Then,

E ≤ID F ⇐⇒ {r(i)(E)} ≤dic {r(i)(F )}, (3)

where the lexicographical order ≤dic is defined as follows:

{ai} <dic {bi} ⇔ ak < bk (k = min{i|ai ̸= bi}), (4)
{ai} =dic {bi} ⇔ ai = bi, (5)
{ai} ≤dic {bi} ⇔ (ai <dic bi) ∪ (ai =dic bi). (6)

Finally, the best routing table Ẽ satisfies the following
equation:

Ẽ ≤ID E, ∀E ∈ E. (7)

2) Guarantee of Reachability: These operations guarantee
reachability in FRT. The Guarantee of Reachability function
in FRT-Chord is the same as the stabilize function in Chord.

3) Entry Learning: This function obtains a node’s informa-
tion and inserts it into a routing table in FRT. A node obtains
another node’s information in the following situations.

• When a new node joins the network in FRT-Chord, it
obtains information on its successor and the information
in the successor’s routing table.

• When node n communicates with node a, n obtains a’s
information.

• Each node periodically executes an active learning
lookups function to obtain information on other nodes.

Active learning lookups in FRT-Chord actively acquires
node information, and is similar to the fix fingers function
in Chord. When a node n executes an active learning lookups
function, a lookup is performed for identifier k calculated by

k = n.id + d(n, e1)

(
d(n, e|E|)

d(n, e1)

)rnd

, (8)
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where rnd is a random number between 0 and 1. n then obtains
the node information on k’s successor.

4) Entry Filtering: If the number of entries |E| in the
routing table E is greater than the capacity of a routing
table L, entries should be removed from E. Entry filtering
is the function that removes an entry in FRT. The function
determines the entry for removal er according to ≤ID as
follows:

E \ {er} ≤ID E \ {e}, ∀e ∈ E. (9)

By calculating a canonical spacing SE
i for each entry ei in

E, er can be found efficiently:

SE
i = log

d(n, ei+1)

d(n, ei)
. (10)

If SE
i′−1 + SE

i′ is the minimum value of SE
i−1 + SE

i for ei,
er = ei′ . In FRT, any entry that must not be removed from the
routing tables is called a sticky entry. Sticky entries in FRT-
Chord consist of the successor list and predecessor entries that
are required in order to reach a destination node.

The step in Entry filtering is as follows. Let C be the set
of candidates for er.

1) Add all entries in E to C.
2) Remove the sticky entries from C.
3) When SE

i′−1+SE
i′ is found for ei ∈ C, er equals ei′ and

is removed from E.

By sorting {SE
i−1+SE

i } into ascending order, er can be found
in O(1) steps.

III. PFRT-CHORD

PFRT is a method of designing proximity-aware routing
algorithms for structured overlays. Because PFRT is a simple
extension of FRT, PFRT-based algorithms also have many of
the advantageous features of FRT, compatibility with other
extensions, broadened application domains and so on.

PFRT-Chord is a PFRT-based algorithm designed by extend-
ing Chord, and therefore consistent hashing and greedy routing
are employed. We designed PFRT-Chord since Chord is one
of the most well-known algorithms for structured overlays.

The main difference among PFRT-Chord, FRT-Chord, and
Chord is the method of building routing tables. Routing
tables in FRT-Chord are maintained based on only node
identifiers, whereas routing tables in PFRT-Chord are also
maintained based on not only node identifiers but also network
proximity. PFRT-Chord updates routing tables using various
information, and so an entry e in a routing table of n is
given an identifier e.id, an address e.address, and a metric
e.proximity that measures the network proximity from n to e.
e.proximity < f.proximity then expresses that e has a better
network proximity than the entry f . Although a PFRT-based
algorithm could consider any metric for network proximity,
we select communication latency in this paper.

A. Two Total Orders on Routing Table Set

PFRT-Chord defines both the identifier-based order ≤ID and
the proximity-based order ≤PR, where ≤ID is the same as
in FRT-Chord, in order to update routing tables based on
identifier and network proximity.

E ≤PR F indicates that routing table E is better than F
based on network proximity. If f is an entry in the routing
table F , then we define ≤PR as follows:

E ≤PR F

⇔ 1

|E|
∑
e∈E

e.proximity ≤ 1

|F |
∑
f∈F

f.proximity. (11)

Sticky entry is the set of entries which are necessary for
reachability, stabilize, churn tolerance, and so on. Therefore,
PFRT-Chord compares routing tables except sticky entries in
order to find better routing table based on network proximity.

B. Guarantee of Reachability

The Guarantee of Reachability function in PFRT-Chord is
the same as that in FRT-Chord.

C. Entry Learning

Similar to FRT-Chord, this function obtains a node’s infor-
mation and inserts it into a routing table. However, because
an entry e in the routing table of node n has the metric
e.proximity in PFRT, n should also measure e.proximity.
When n obtains e’s information except for e.proximity, n
sets e.proximity to its maximum value by default.

Since communication latency is used as the metric for
network proximity, a node n must measure the latency l(n, e)
between n and an entry e. PFRT-Chord uses the round trip
time (RTT) as the measure of communication latency, and n
can measure or obtain the RTT l(n, e) under the following
circumstances.

• n measures l(n, e) in sending a round-trip message.
• When e knows RTT l(e, n) and sends a message to n,

l(e, n) is sent with the message.
In order to detect failures, messages in general routing

algorithms are round-trip messages. Thus, PFRT-Chord can
measure RTTs between nodes without causing heavy traffic.

The last appending entry ea is recorded in order to use in
Entry filtering.

D. Entry Filtering

If the number of entries |E| in the routing table E is greater
than the capacity of routing table L, entries should be removed
from E. The Entry filtering function in PFRT removes an entry
according to ≤ID and ≤PR.

Let Enext be the next routing table, which is the routing
table after deleting the entry for removal er and let Eprev be
the previous routing table, which is the routing table before
adding ea:

Eprev = E \ {ea}, (12)
Enext = E \ {er}. (13)
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Entry filtering provides filters, a proximity filter and an
identifier filter, based on these orders that narrow down the
candidate set for Enext, and nodes in PFRT-Chord can select
Enext which is better than Eprev when ea does not belong to
the sticky entry, which is the set of entries which are necessary
for reachability, stabilize, churn tolerance, and so on.
er can be any entry. Let CE be the set of candidates for

Enext. Then,
CE = {E \ {e}|e ∈ E}. (14)

Because (12), ea ∈ E and (14) hold,

Eprev ∈ CE . (15)

The proximity filter is the first filter in Entry filtering and is
based on ≤PR. Any routing table that is better, based on ≤PR,
than Eprev passes through the proximity filter. Therefore, CE
is narrowed down to the proximity-aware candidate set CPR

E

through
CPR
E = {E|E ≤PR Eprev, E ∈ CE}. (16)

Because (15) and (16) holds,

Eprev ∈ CPR
E (17)

holds. Because CPR
E is a candidate set for Enext,

Enext ∈ CPR
E (18)

holds. Because (17) and (18) hold, Enext is better than Eprev

in terms of network proximity or Enext and Eprev are the
same:

Enext ≤PR Eprev. (19)

The identifier filter is the second filter in Entry filtering and
is based on ≤ID. By utilizing the identifier filter, Enext is
selected as the best routing table from CPR

E through

Enext ≤ID E, ∀E ∈ CPR
E . (20)

Because (17) and (20) hold, Enext is better than Eprev in terms
of its node identifier:

Enext ≤ID Eprev. (21)

By defining ≤ID and ≤PR, algorithm designers can system-
atically design PFRT-based algorithms where routing tables are
updated to Enext ((19) and (21) hold) (Fig. 3).

The step in Entry filtering is as follows.Let C be a candidate
set for er, let et be a threshold entry of the network proximity
metric, and let u be the capacity of a successor list.

1) Add all entries in E to C.
2) Remove sticky entries from C.
3) Remove {e ∈ C|e.proximity < ea.proximity} from C.

4) When SE
i′−1+SE

i′ is found for ei ∈ C, er equals ei′ and
is removed from E.

Steps 1, 2, and 4 are the same as those in FRT-Chord. Thus,
by adding only step 3, FRT-Chord is extended to PFRT-Chord.
The proximity filter is passed in step 3, and the identifier filter
is passed in step 4.
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Fig. 3. Entry filtering in PFRT-Chord

By sorting {SE
i−1 + SE

i } into ascending order, er can be
found in O(L) steps. In contrast, finding er in FRT-Chord
requires O(1) steps. However, the computations to determine
er are performed by each computer. Therefore, the time
required to find er is sufficiently less than that to forward
a message.

Because PFRT-based algorithms are based on PNS, a node’s
routing table contains only those entries with a high value of
the network proximity metric. Therefore, the node directly
forwards messages to the nodes listed in its routing table,
and so recursive routing is more suitable for PFRT-based
algorithms than iterative routing.

Nodes often join and leave P2P networks so routing algo-
rithms should have churn tolerance. Therefore, PFRT-Chord
has as much churn tolerance as Chord because routing tables
in PFRT-Chord necessarily contain the successor list and
predecessor like Chord.

IV. EVALUATION

In this section, we evaluate PFRT-Chord through a simula-
tion. We implemented PFRT-Chord on Overlay Weaver [17],
[18], which is an overlay construction toolkit, and performed
experiments on the following machine.

• Simulator: Overlay Weaver 0.10.1
• Operating system: Linux 2.6.35.10-74.fc14.x86 64
• Central processing unit: Intel Xeon E5620 (2.40 GHz)
• Memory: 32 GB
• Java virtual machine: Java SE 6 Update 22

Communication latencies between any two nodes were
calculated by using a topology which simulates a physical
network by using a transit-stub (TS) model [19]. TS models
have two types of nodes: transit and stub. In our simulation,
the communication latencies of the inter-transit node links,
stub-transit node links, and inter-stub node links were set at
100, 20, and 5 ms, respectively. The maximum communication
latency is 870 ms and the average is 420 ms. The simulated
communication latency is much higher than communication
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latency over real Internet, but we can evaluate simulation
results by not value but rate correctly.

A. Comparison between PFRT-Chord and Existing Routing
Algorithms

We measured the routing latency—the time required per
request—in Chord, LPRS-Chord, FRT-Chord, and PFRT-
Chord. Parameters values in the simulations were set as
follows.

• Number of nodes: 10 000
• Capacity of a successor list: 4
• Capacity of a routing table in PFRT-Chord: 16
• Number of requests per node: 300
• Routing type: recursive
Because the number of nodes is 10 000, the number of

entries in a finger table in Chord and LPRS-Chord is about
13; that is, the number of entries in all three parts of the routing
tables in Chord and LPRS-Chord is about 18. Therefore, the
capacity of a routing table in PFRT-Chord is set at 16 so that
PFRT-Chord does not have an advantage in the number of
entries that can be held.

Fig. 4(a) shows the averages and 99th percentiles of the
routing latencies in Chord, LPRS-Chord, FRT-Chord, and
PFRT-Chord. The average routing latency is 2 081 ms in PFRT-
Chord and 2 756 ms in Chord. The average routing latency in
PFRT-Chord is thus about 24.5% less than that in Chord. In
addition, the 99th percentile of the routing latency in PFRT-
Chord is about 22.1% less than that in Chord. Consequently,
PFRT-Chord is verified as an appropriate proximity-aware
routing algorithm.

The average routing latency in FRT-Chord is 2 587 ms; that
is, the average routing latency in PFRT-Chord is about 19.6%
less than that in FRT-Chord. Furthermore, the 99th percentile
of the routing latency in PFRT-Chord is about 15.0% less than
that in FRT-Chord. Therefore, extending FRT to PFRT in order
to consider network proximity improves its performance.

The average routing latency in LPRS-Chord is 2 676
ms; that is, the average routing latency in PFRT-Chord is
about 22.2% less than that in LPRS-Chord. Additionally,
the 99th percentile of the routing latency in LPRS-Chord is
approximately equal to that in Chord. PFRT-Chord is thus a
better proximity-aware routing algorithm than LPRS-Chord.
Furthermore, the capacity of routing tables in PFRT-Chord
can be set to an arbitrary value, and so routing latencies can
be decreased further.

Although FRT-Chord does not consider network proximity,
the average and 99th percentiles of the routing latency in FRT-
Chord are only about 3.3% and 8.7% less than those in LPRS-
Chord, respectively. This indicates that route lengths in LPRS-
Chord are longer than those in FRT-Chord. Thus, we measured
the route lengths in the four algorithms.

The measurements results are given in Fig. 4(b), which
shows the averages and 99th percentiles of the route lengths.
The average route length in LPRS-Chord is longer than in
PFRT-Chord, which may explain why the routing latencies
are greater in LPRS-Chord than in PFRT-Chord. To test this

hypothesis, we also calculated the average routing latency
per hop for each algorithm (Fig. 4(c)). The average routing
latency per hop in PFRT-Chord is about 16.0% less than that in
LPRS-Chord. Hence, PFRT-Chord is superior to LPRS-Chord
at utilizing network proximities.

B. Independence of the Number of Nodes

We finally examined whether PFRT-Chord retains the ben-
eficial features of FRT; specifically, broadened application
domains. Since broadening of application domains indicates
that the routing algorithm is independent of the number of
nodes, and flexibility means that the capacity of each routing
table can be changed, we measured the average route length
and the average routing latency in PFRT-Chord under the
following parameter values.

• Number of nodes: 100, 1000, and 10 000.
• Capacity of each routing table: 20–160.
Figs. 5(a) and 5(b) show the simulation results for the

average route length and the average routing latency. As the
capacity of the routing tables increases, the average route
length and average routing latency both decrease. Therefore,
PFRT-Chord is flexible.

As the number of nodes increases, the average route length
and average routing latency increase. Although the number of
nodes increases by 10- and 100-fold, the average route length
increases by only about 1.66- and 2.34-fold, respectively, and
the average routing latency increases by only about 1.59-
and 1.94-fold, respectively. In addition, when the number of
nodes N is less than the capacity of each routing table L, for
example, N = 100 and L = 160, the average route length
is 2 (incidentally, the average route length in LPRS-Chord is
3.28). Hence, each routing table contains the information on
all of the nodes in the network, and a source node forwards a
message to the predecessor of the destination node in the first
hop. PFRT-Chord thus broadens application domains.

V. CONCLUSION

We proposed Proximity-aware Flexible Routing Tables
(PFRT), a methodology to design proximity-aware routing
algorithms for structured overlays. A PFRT-based algorithm
defines two total orders on the set of all routing table pat-
terns: an identifier-based order ≤ID and a proximity-based
order ≤PR. Therefore, PFRT facilitates algorithm designers
to systematically design proximity-aware routing algorithms.

To this end, we designed a PFRT-based algorithm, PFRT-
Chord, which employs the same data placement method and
routing policy as in Chord. The main difference between
PFRT-Chord and Chord is the method of building routing
tables. To build routing tables in PFRT-Chord, we must define
≤ID and ≤PR, and so routing tables in PFRT-Chord are
maintained according to not only node identifiers but also
network proximities in the physical network.

We implemented and simulated PFRT-Chord in a set of
experiments. Routing latencies in PFRT-Chord are less than
those in not only Chord but also LPRS-Chord, which is an
existing proximity-aware routing algorithm. This performance
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improvement can be achieved even if the number of entries
in PFRT-Chord routing tables is less than that in LPRS-
Chord. Therefore, our experiments showed that PFRT-Chord is
verified as an appropriate proximity-aware routing algorithm
for structured overlays.

In addition, we examined whether PFRT-Chord retains the
beneficial features of FRT. Our simulations showed that PFRT-
Chord is independent of the number of nodes and that the
routing table capacity can be changed dynamically.

Future work includes design of extensions of FRT con-
sidering other real-world metrics such as node lifetime. FRT
can incorporate with those metrics in the same manner as for
PFRT. Combinations of PFRT and other extensions should be
examined. GFRT [14], an extension of FRT takes account of
groups of nodes and reduces communication between nodes.
It should work with PFRT.
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