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Abstract

A cloud storage with persistence shows solid performance only
with a read heavy or write heavy workload. There is a trade-off
between the read-optimized and write-optimized design of a cloud
storage. This is dominated by its storage engine, which is a soft-
ware component for managing data stored on memory and disk.
A storage engine can be pluggable with an adequate software de-
sign though today’s cloud storages are not always modular. We de-
veloped a modular cloud storage called MyCassandra to demon-
strate that such a cloud storage can be read-optimized and write-
optimized with a modular design. Various storage engines can be
introduced into MyCassandra and they determine with what work-
load the cloud storage can perform well. With MyCassandra we
proved that such a modular design enables a cloud storage to adapt
to workloads.

‘We propose a method to build a cloud storage that performs well
with both read heavy and write heavy workloads. A heterogeneous
cluster is built from MyCassandra nodes with different storage en-
gines, read-optimized, write-optimized, and on-memory (read-and-
write-optimized). A query is routed to nodes that efficiently process
it while the cluster maintains consistency between data replicas
with a quorum protocol. The cluster showed comparable perfor-
mance with the original Cassandra for write heavy workloads, and
it showed considerably better performance for read heavy work-
loads. With read-only workload, read latency was 90.4% lower than
and throughput was 11.00 times as high as Cassandra.

Categories and Subject Descriptors C.2.4 [Computer Systems
Organization]: Distributed databases; H.3.4 [Software and Soft-
ware]: Performance evaluation

General Terms Design, Experimentation, Performance

Keywords Cloud Storage, Distributed Systems, Performance

1. Introduction

Cloud storages such as NoSQL, key-value store (KVS), document-
oriented database, and GraphDB, which meet requirements that
are difficult for traditional relational database (RDB) to treat, have
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attracted a great deal of public attention. There are currently over
100 NoSQL projects that have been actively developed and put into
practice, and operated. Compared to RDB, in common, they have
advantages in scalability to a large number of servers, while they
constrain their data models, support only simple queries, and adopt
relaxed consistency models.

Each cloud storages has its own characteristics derived from
its design decisions. There are many design choices. First, there
are various data models in cloud storages: a key-value map, as in
Redis, a multi-dimensional map, as in Cassandra, documents, as in
MongoDB [2], and graphs, as in Neo4;j [13]. There are also various
distribution architectures: a cloud storage can be centralized, such
as a master-slave model or a sharded model, and another can be
decentralized with consistent hashing. There are another design
trade-offs between performance and persistence, i.e., whether to
keep data in memory or store them on disk, place replicas or not,
and place them synchronously or asynchronously.

Similarly, there is a trade-off between the write-optimized or
read-optimized design of a cloud storage with persistence. Table
1 lists properties of common cloud storages with persistence fo-
cused on read vs. write performance. A storage engine means a
software component for managing data stored on memory and
disk. Each storage engine implements an indexing algorithm suit-
able for its application. B-Trees are a balanced tree commonly
used in traditional databases and filesystems. They process write
and read queries in logarithmic time, while LSM-Tree is a newer
log-based tree optimized to write queries and processes them in a
constant time. Apache Cassandra [10, 20] and Apache HBase [1],
which adopt LSM-Tree, are write-optimized. Yahoo Sherpa [4] and
sharded MySQL [15], which adopt B-Trees, are read-optimized.
Our observation shows that the storage engine determines which
workload a cloud storage treats efficiently.

On the other hand, the distribution architecture of a cloud stor-
age is independent of the performance characteristics on read and
write queries. Queries in a centralized cloud storage take as same
access path from a client to one or more storage nodes as that in
a decentralized one. There is no difference between write and read
queries.

We focused on storage engines and developed MyCassandra, a
cloud storage which separates storage engine from a distribution
architecture. It works with various storage engines, which signifi-
cantly affect the performance characteristics of the read and write
queries. As a result, we confirmed that selection of the storage en-
gine determines if a cloud storage is to be write or read optimized.

Similar to the traditional cloud storages with persistence, a
homogeneous cluster of MyCassandra nodes shows solid perfor-
mance only with a read heavy or write heavy workload. This pa-
per presents a method to build a cloud storage that performs well
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Table 1. Properties of cloud storages

[ Cassandra, HBase

Sherpa, sharded MySQL

Indexing LSM-Tree
Write sequential write

Read || random reads, merge
Performance write-optimized
Storage engine Bigtable clone

B-Trees

random reads, writes
random reads
read-optimized
MySQL

with both types of workloads. A heterogeneous cluster is built from
MyCassandra nodes with different storage engines. Experiments
showed that this method enables the cluster performed well with
both types of workloads.

This paper is organized as follows. Section 2 introduces Apache
Cassandra, on which our implementation is based. Section 3 de-
scribes MyCassandra, a modular cloud storage we developed, and
presents the method to build a heterogeneous cluster of MyCas-
sandra nodes, which is compatible with both the read and write
performance. Section 4 shows experimental results and discusses
the results. Section 5 discusses the pros and cons of our proposal,
specially about the perspectives other from performance. Section
6 examines modular cloud storages and indexing algorithms as re-
lated work. Section 7 shows conclusion and future work.

2. Background

It is difficult for a storage to predict what data will be written and
read. Therefore, unless all data are on memory, accesses to the
data require a number of random I/Os to disk. A log-structured
storage [18], which performs only sequential I/Os on disk when
writing, achieves much higher throughput than traditional storages
involving random I/Os. For a read query, a log-structured storage
has to coalesce different parts of logs. Such multiple reads incur a
performance penalty. Thus, there is an inherent trade-off between
optimizing for read queries and optimizing for a write query in
traditional cloud storages.

We proposes and give empirical proof of a method for building
a cloud storage that shows good performance with both read heavy
and write heavy workloads.

We first design and develop a modular cloud storage called
MyCassandra. Next, we organizes a heterogeneous cluster using
MyCassandra nodes.

This section introduces Apache Cassandra, on which our imple-
mentation is based.

2.1 Apache Cassandra

Apache Cassandra [10, 20] is an open source cloud storage devel-
oped by Facebook and it is currently an top-level project in Apache
Software foundation. Its notable properties are scalability up to
hundreds of servers operating in multiple data centers and high
availability with no single point of failure by adopting a decen-
tralized structure.

The followings are Cassandra’s features related to the method
proposed in this paper.

2.1.1 Consistent Hashing

Cassandra adopts consistent hashing to map data to nodes. Figure 1
represents consistent hashing of Cassandra. In particular, consistent
hashing assigns identifiers to both nodes and data on its circular
identifier space. For example, if the hash value of the record’s
key keyl is 11, node 14, which is that closest clockwise to 71, is
appointed as the primary node for key/ and is responsible for the
record. Any node can serve clients as a proxy and relays queries to
nodes responsible for the record. Thus, a query with key! is relayed
to node /4.

ID space

secondary 1

secondary 2

0 - 15: hash value _
Number of replica: = 3 hash(key1) = 11

[keyt [ values |

Figure 1. Consistent hashing
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Figure 2. Process flow of a write query in a Cassandra node
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An advantage of consistent hashing is fine load balancing by a
hash function, and it is able to provide high availability because
there are no master that manages responsible range of each node
on the identifier space. In most cloud storages including Cassandra,
all nodes recognize other nodes’ identifiers and IP addresses. Any
node in a cluster can take the role of a proxy that responds to queries
from a connected client.

2.1.2 Bigtable storage engine

Cassandra’s storage engine is a clone of Google Bigtable [3].
It adopts the Log-Structured Merge Tree (LSM-Tree) [14] and
is write optimized. The storage engine consists of CommitLog,
Memtable, and SSTable. Figure 2 shows how a write query is pro-
cessed in Cassandra. A node processes write queries in the follow-
ing procedure:

1. First, the node sequentially appends data to CommitLog for
persistence.

2. Next, it updates Memtable, a map on memory, for quick read-
ing, and acknowledges a client.

3. If data overflow Memtable or after data remained for a specified
period on Memtable, the storage engine asynchronously flushes
the data to SS7able on disk and deletes them from CommitLog
and Memtable.

This procedure achieves both high performance and consistency
by limiting synchronous disk accesses to sequential ones. It also
enables a node to respond to concurrent write queries from many
clients without locking. On the other hand, these advantages com-
pensate lesser read performance. Cassandra reads changes for a sin-
gle record from multiple SSTables and merges them to reply to a
read query. It requires a number of random I/O to disk. Cassandra
always maintains data persistence for any datum by keeping it in
the CommitLog or a SSTable on disk.

2.1.3 Replication

In a cluster of Cassandra nodes, replicas are placed on N nodes,
a primary node and N - / secondary nodes, which are clockwise
nodes from the primary node. There is no distinction between them.
For example, Figure 1 shows three replicas on a primary node /4
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Figure 3. Storage Engine Interface of MyCassandra

and two secondary nodes 3 and 7. They are responsible for the hash
value /1.

Cassandra can take account of server racks and data centers
when choosing secondary nodes. It improves availability in case of
network partitions and coincident server failures in the same rack.
This way of replication is advantageous in that there are no servers
managing meta-data of replicas.

3. System Overview

We propose a method for building a cloud storage that performs
well with both read heavy and write heavy workloads in the fol-
lowing steps:

1. MyCassandra: a modular cloud storage based on Cassandra,
which can be read or write optimized.

2. A heterogeneous cluster of MyCassandra: a heterogeneous
cloud storage, which consists of MyCassandra nodes with dif-
ferent types of storage engines. It shows good performance with
both read and write performance.

3.1 MyCassandra

MyCassandra is a modular cloud storage designed to demonstrate
a cloud storage can be read or write optimized with a modular
design. Trade-off between the read and write optimized designs
of a cloud storage is dominated by storage engine, which is a
software component that manages data on memory and disk. A
storage engine is an independent component and can be pluggable
with an modular software design. Today’s cloud storages are not
always modular, while MyCassandra is designed to be able to use
various storage engines.

Figure 3 shows the components related to reading and writing
data. MyCassandra has Storage Engine Interface located between a
storage engine and a component for accepting queries. A new stor-
age engine can be added by implementing this interface. The inter-
face prescribes basic functions for data management, i.e., connect,
put, and get functions.

This paper targets three different storage engines the authors
provide, Bigtable (Cassandra’s original one), MySQL, Redis.

Figures 4 and 5 respectively show the write and read latencies
of each storage engine (Bigtable, MySQL, and Redis) on a homo-
geneous cluster of 6 MyCassandra nodes, where read and write are
at different rates using the YCSB (Section 4.1). In this experiment,
data are not replicated while experiments in Section 4 deploy repli-
cas. The write latency of Bigtable is up to 89.7% lower than that of
MySQL in Write Only workload, while the read latency of MySQL
is up to 80.3% lower than that of Bigtable in Read Heavy workload.
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Figure 6. Throughput for each storage engine

Figure 6 also shows throughput for each storage engine. Bigtable
achieved up to 11.79 times as high throughput as that of MySQL
in Write Only workload, while MySQL achieved up to 9.87 times
as high throughput as that of Bigtable in Read Only workload. Re-
dis processes both read and write queries fast by placing data on
memory.
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Figure 7. Mapping Cassandra’s data model to that of RDB and
KVS.

3.1.1 Data Model Mapping

Data for Cassandra cannot be stored directly in RDB or KVS
because of their data models are mismatched. Cassandra adopts
multi-map model and it is schema-less. Therefore, MyCassandra
must convert data format from Cassandra’s one to each storage
engine’s one.

Figure 7 shows Cassandra’s data model mapped to MySQL,
which is a RDB, and Redis, which is a KVS. Cassandra stores data
in a bucket called ColumnFamily, where a set of columns is stored.
A ColumnFamily can include arbitrary types of columns without
a pre-specified schema. A Table of MySQL is appropriated for the
ColumnFamily. MyCassandra stores schema-less data of Cassandra
into Tables of MySQL as follows. MySQL’s Table requires a pre-
defined schema and MyCassandra defines the schema as having a
single key and a single value. MySQL stores multiple columns as a
single value by converting them to a byte sequence.

Redis also stores the key-value pair the same as MySQL. In case
of Redis, a ColumnFamily name is appended to the head of a key
as a prefix because Redis does not support multiple buckets like
MySQL’s Tables. MyCassandra recognizes which ColumnFamily
has the datum by the prefix. Keyspace of Cassandra is a container
for multiple ColumnFamilies and it is simply mapped to database
in MySQL and db in Redis.

3.1.2 Storage Engine

This section describes storage engines MyCassandra provides.

Bigtable storage engine is Cassandra’s original based on the log-
structured model described in Section 2.1.2.

MySQL storage engine is MySQL, a relational DBMS. MyCas-
sandra accesses it via Java Database Connectivity (JDBC). MySQL
also has its own various storage engines such as InnoDB and My-
ISAM. In this work, we choose InnoDB, a default storage engine of
MySQL 5.5. In addition, we use stored procedure. It improves per-
formance by eliminating SQL parsing. MyCassandra issues limited
SQL statements and stored procedure eliminates all SQL parsing.

Redis [17] is a KVS that stores key-value pairs on memory,
similar to memcached [6]. Unlike memcached, Redis supports vir-
tual memory, that extends its capacity beyond equipped memory by
swapping out part of data to disk. However, MyCassandra does not
use this feature and use Redis just as an on-memory KVS because
of its higher performance. To access the Redis storage engine, My-
Cassandra uses Redis’ original APIs, Jedis.

(b) Satisfy a quorum protocol ( W+ R> N)
W=R=2 N=3

AN

(a) Basic idea
write query
\, .
AN write
sync \asyne /

i * W: Write-optimized node
| * R: Read-optimized node
* RW: On-memory node

Figure 8. Basic concept of a heterogeneous cluster of MyCassan-
dra

3.2 A heterogeneous cluster of MyCassandra

As the next step, we propose a method to build a cloud storage that
supports both read heavy and write heavy workloads. A hetero-
geneous cluster is built from MyCassandra nodes equipped with
different storage engines, write-optimized, read-optimized and on-
memory.

The heterogeneous cluster replicates data on different storage
engine nodes. A proxy in the cluster receives a query from a client
and then routes it to nodes that are responsible to the key speci-
fied in the query. While a query is synchronously routed to nodes
processing it fast, it is asynchronously routed to nodes processing
it slower. In Figure 8-(a), a write query is synchronously routed
to a node equipped with a write-optimized storage engine. A syn-
chronous routing returns an acknowledgment to the proxy. An
asynchronous routing does not respond to the proxy and the query
can be processed later. This approach achieves good performance
for both read and write queries in a single cloud storage.

The challenge this approach involves is maintenance of consis-
tency between replicas as much as possible with the original Cas-
sandra. We solve this issue by a quorum protocol. A quorum pro-
tocol is a consistency management policy Cassandra supports. This
protocol for N replicas is defined as:

W+R>N 1

W and R refer to the number of replicas in agreement for writing
and reading. They are one or larger. For example, if the number
of replicas N is three, W = R = 2 satisfies the requirement as
2 + 2 > 3. That is, there has to be the at least one node processing
both write and read queries synchronously to maintain a quorum
protocol on the heterogeneous cluster. The node must process fast
both write and read queries otherwise the cluster performs bad with
either write or read queries. Therefore, we give on-memory storage
engine nodes the role of the node. Described in section 2.2.1, an
on-memory storage engine node can process both write and read
queries fast. For example, a write query is synchronously routed
to write-optimized and on-memory storage engine nodes and is
asynchronously routed to a read-optimized storage engine node,
as shown in Figure 8-(b). Also, a read query is synchronously
routed to read-optimized and on-memory storage engine nodes and
is asynchronously routed to a write-optimized storage engine. Of
course, there are trade-offs in using an on-memory storage engine.
We discuss these trade-offs in Section 5.

3.2.1 Node placement and load balancing

As stated in the previous section, Cassandra and MyCassandra par-
tition data and route queries by consistent hashing. A proxy places
N replicas on a primary node and N-/ closest clockwise secondary
nodes on the circular identifier space. On a heterogeneous cluster,
a proxy takes account of storage engine type in replica placement.
Specifically, a proxy choose N-1 secondary nodes as N nodes sat-
isfy the constraints on W and R in the formula (1). The number
of write-optimized nodes is W or larger and the number of read-
optimized nodes is R or larger. The proxy choose such N-I nodes
as closest clockwise from the primary node as possible.
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Figure 9. Server, node and storage placement on circular identifier
space

There are three approaches at least in node placement on
servers, and we investigated the trade-offs between them. Figure
9 shows the three node placement approaches.

We concluded the approach (3) is adequate to our implemen-
tation because of fault-tolerance and load balancing, in which a
server has three nodes, write-optimized, read-optimized and on-
memory node. In this approach, a proxy chooses secondary nodes
as a server does not have multiple replicas. If not, replicas cannot
improve fault-tolerance and availability. Specifically, when choos-
ing secondary nodes, a proxy skips over a node located on a server
having a node that has been chosen as a secondary node.

Approach (1) is naive, in which a server has a single node and
each node has a single storage engine. This approach has a problem
of load imbalance. For example, if a workload is read heavy, the
load is concentrating to read-optimized and on-memory servers.
Another problem is to be unable to fully utilize the resources of
a server because on-memory nodes do not require any disk space.

Approach (2) is space-efficient, in which a server has a single
node and each node has different multiple storage engines. This
approach is like a virtual node [7] because a node has multiple
identifiers on the circular identifier space. However, we doubt that
it is difficult for the approach to add or drop storage engines while a
cluster is working and has no advantages in terms of fault tolerance.
Approach (3) enables storage engine management by starting up
and stopping nodes, that requires no additional mechanism.

3.2.2 Membership management

Any node in a heterogeneous cluster has to recognize the storage
engine type of all other nodes, because any node serves a client as
a proxy and routes a query to a appropriate nodes according to the
query type and the storage engine type.

Therefore, we extend Cassandra’s gossip protocol, which is
used for membership management. The gossip protocol is respon-
sible for ensuring that all of members in a cluster are aware of the
state of the other nodes (i.e. live, dead, join). In our implementation,
a storage engine type is attached to a gossip message each node ex-
changes. By that, all nodes recognize others’ storage engine types.

3.2.3 Read and write queries

Figure 10 shows the process flow of write and read queries. To pro-
cess fast both write and read queries, a proxy routes synchronously
a write query to write-optimized nodes and a read query to read-
optimized nodes. Also, a heterogeneous cluster uses a quorum pro-
tocol to ensure data consistency between replicas. In this paper, N is
the number of replicas, W is the number of agreements for writing,
and R is the number of agreements for reading.

This subsection describes the process flow of queries.

A write query is processed as follows:

1. A proxy node receives a write query from a client. The proxy
routes the query to nodes responsible for the record specified by
the query.

Read I Client

* W: Write-optimized

(e.g. Bigtable)

* R: Read-optimized
(e.g. MysQL)

* RW: On-memory
(e.g. Redis)

wait for two acks for
write and return

Figure 10. Process flow of read and write queries (in case N = 3)

2. The proxy waits W acknowledgments. Write-optimized and on-
memory nodes usually reply fast and they return W or more
acknowledgments.

3-a. If writing to them succeeds and the proxy receives W acknowl-
edgments, it returns a success message for the write query to
the client.

3-b. If a write-optimized or on-memory node fails in writing, the
proxy waits for W acknowledgments including that from read-
optimized nodes and returns a success message.

4. After returning, the proxy asynchronously waits for acknowl-
edgments from the remaining N-W nodes.

Write latency is limited to the largest latency in those of the
write-optimized and on-memory nodes as long as they succeed. The
read-optimized nodes do not affect write performance because they
are not counted in W nodes.

A read query is processed as follows:

1. A proxy node receives a read query from a client. The proxy
sends a request for the specified record to a read-optimized or
on-memory node, and sends a request for digest (hash) of the
specified record to other replicas.

2. The proxy waits for R replies including the specified record.
Read-optimized and on-memory nodes usually reply fast and
they return R or more replies.

3-a. If succeeded in reading and the record and R-I digests are

consistent, the proxy returns the record to the client.

3-b. If failed to read or the record and digests are not consistent,

the proxy tries to read and collect digests until they satisfy the
quorum R.

4. The proxy waits for digests from the remaining N-R nodes after
replying to the client. If there is an old record or inconsistency
among N replicas, the proxy asynchronously updates the old
record to the newest version. A Cassandra’s feature ReadRepair
does it.

Read latency is limited to the largest latency in those of the
read-optimized and on-memory nodes as long as they succeed. The
write-optimized nodes do not affect read performance because they
are not counted in R nodes.

The most common cause of the read-time inconsistency is due
to the process flow of write queries. On-memory nodes tend to have
newer data than read-optimized nodes because an update is asyn-
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chronously reflected to read-optimized nodes. It is possible for a
read-optimized node not to reflect the latest update. When a proxy
notices such an inconsistency between read-optimized nodes and
on-memory nodes, it waits for replies from write-optimized nodes,
satisfies the quorum and returns consistent record to a client. Even
in such a case, write-optimized nodes and on-memory nodes are
consistent due to an agreement taken when writing. After that, the
proxy resolves the inconsistency by the ReadRepair, a Cassandra’s
feature to resolve such an inconsistency in the background. Follow-
ing read accesses to the data succeed due to the background repair
and take the 3-a step.

By these write and read protocols, write and read latencies are
limited to those of the nodes that process the query fast while
keeping data consistency. Even in the worst case, the latency is the
same as the original Cassandra.

4. Performance Evaluation

This section demonstrates that a heterogeneous cluster of MyCas-
sandra nodes shows good performance with both read heavy and
write heavy workloads. We evaluate its performance with the fol-
lowing storage engines:

e Write-optimized: Bigtable (Cassandra 0.7.5)
e Read-optimized: MySQL (6.0.10)
® On-memory: Redis (2.2.8)

4.1 Benchmark

We use Yahoo! Cloud Serving Benchmark (YCSB) [5], that is a
cloud benchmark framework developed by Yahoo! Research for
evaluation of cloud storages. YCSB provides core workloads close
to real-world applications.

In YCSB, an user can specify the ratio of the number of read
queries to write queries. YCSB executes these queries on the target
cloud storage and measures throughput of the entire workload and
the time required for each query, i.e., latency.

Benchmarking process consists of the following phases:

1. Load phase: load data.

2. Warm up phase: warm up the target cloud storage with the same
workload as the following measurement.

3. Transaction phase: measure response times.

Table 2 lists the four workloads used in this measurement.

Write Only and Write Heavy are workloads with a high write
ratio, while Read Only and Read Heavy are workloads with a high
read ratio. This table also lists examples of actual applications with
the write and read ratios of each workload.

Accessed data are chosen along Zipfian distribution. The Zip-
fian distribution is a probability distribution, which means that ac-
cess frequency of each datum is determined by its popularity, not
by freshness.

Table 3 lists experimental parameters, and Table 4 lists server
configurations. As described in the previous section, the replication
number N is three, and we prepare six servers and boot three nodes
on each server, i.e., 3 X 6 = 18 nodes for a heterogeneous cluster

Table 2. YCSB workloads

Workload || Application example  Read  Update
Write Only Log 0% 100%
Write Heavy Session 50% 50%
Read Heavy Photo Tagging 95% 5%
Read Only Cache  100% 0%

Average Write Latency |l Cassandra
[mszECJ MyCassandra
Cluster
18
1.64
14] 139

1.2

o_;. 0.73 % 0.79
0.6 %
0.4— %

0.2+

Vl\lrite Only
‘Write heavy

Write Heavy Read Heavy

Read Onlx
Read heavy -

Figure 11. Write latencies for each workload
[l cassandra

Average Read Latency

[rr\sssef:] MyCassandra
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304 2758
25
20
15+
10+
5+ 7
o ) 7
Write Only Write Heavy  Read Heavy Read Only
Write heavy Read heavy

Figure 12. Read latencies for each workload

of MyCassandra, while we boot one Cassandra node on each six
physical servers, i.e., 6 nodes. For the number of replicas N = 3, the
number of replicas in agreement W and R are set both 2 to satisfy a
quorum protocol, i.e., 2+ 2 > 3. We allocated 6 GB of memory to
each server as Java Virtual Machine heap for Cassandra, MySQL
buffer pool and Redis. Three nodes on a single server share the
memory and use 2 GB each. Each server loads 6 millions entries
(12 millions X 3 replicas / 6 servers). Each server seems to have
6 GB of data (1 KB value x 6 million), but it has more because a
data storage requires an index and meta data for each record. For
example, a Cassandra node takes 8.8 GB for the loaded data. In this
data capacity, each server allocates 6 GB memory resources to data
storage (6 GB). MyCassandra assigns three nodes each to 2 GB on
a server.

Table 3. Experimental parameters

Num. of server machines 6
Num. of client machines 1
Num. of loaded records 12 million
Quorum (N,W,R)=(3,2,2)

Size of a key up to 10 byte

Size of a value || 100 byte x 10 columns = 1,000 byte
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Table 4. Server configuration

oS Linux 2.6.35.6 (x86_64)

CPU 2.40 GHz Xeon E5620 x 2

Memory 8 GB RAM

Disk 128 GB SSD x 2

Crucial Real SSD C300 128 GB

Java Virtual Machine Java SE 6 Update 21

4.2 Experimental results and discussion

Figures 11 and 12 show average write and read latencies. Through-
put was fixed to 5,000 queries per second, that is moderate in YCSB
experiments [5]. Write latency of the heterogeneous cluster was
higher than that of Cassandra, but the differences were small as
they are between 0.31 ms and 0.57 ms. In contrast to them, read
latency of MyCassandra was much lower than that of Cassandra
as 83.3% lower with Write Heavy workload and 90.4% lower with
Read Only workload.

Figure 13 shows distribution of write latencies. in Write Heavy
workload, The 99th percentiles of the write latencies are relatively
close to the averages in Figure 11. Other workloads show the
similar results. But read latencies are very different. Figure 14 and
15 show distribution of read latencies in Write Heavy and Read
Only workloads. The 99th percentiles of the read latencies are
much larger than the averages in Figure 12. For example, in case
of Read Only workload, with Cassandra and the heterogeneous
cluster, the averages of each were 27.58 ms and 2.65 ms, and the
99th percentiles were 486 ms and 104 ms. These results mean
that the worst read latencies are hundreds milliseconds though the
averages are much lower. The 99th percentile of the heterogeneous
cluster was 78.6% lower than Cassandra in Read Only workload
and 77.7% lower in Write Heavy workload. Such an improvement
of hundreds milliseconds is enough large to be noticed directly by
an user.

Figure 16 shows throughput for all the workloads. We set the
number of client threads as a moderate number 40 because an ex-
cessive number suppresses throughput. Scalability in the number of
clients is an important property but part of future work. Through-
put of MyCassandra was 13 % lower than that of Cassandra with
Write Only workload. In contrast to it, MyCassandra achieved
much higher throughput with other three workloads as 11.0 times
as high as Cassandra in Read Only workload.

Write performance of MyCassandra was comparable with Cas-
sandra though Cassandra employs only the write-optimized storage
engine. Our future work includes investigation of specific causes
of the lesser write performance in part of benchmark. We are sure
that load balance was involved. Cassandra scatters synchronously
all queries to N nodes, which are write-optimized. MyCassandra
routes a write query to W nodes, which are write-optimized and
on-memory but the number W is less than N. N is three and W
is two in the paper. However, the difference in write performance
is relatively small and MyCassandra could outperform Cassandra
much.

5. Other Considerations

This section discusses the pros and cons of the heterogeneous
cluster of MyCassandra nodes.

5.1 Memory overflow

The amount of memory is generally smaller and scarcer than persis-
tent storage. There are two means with MyCassandra to deal with
a fulfilled on-memory node. The first one is to use a persistence
function equipped with an on-memory storage engine, that stores
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Figure 13. Distribution of write latencies in Write Heavy work-
load
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Figure 14. Distribution of read latencies in Write Heavy workload
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Figure 15. Distribution of read latencies in Read Only workload

part of data on a persistent storage. Redis provides such a function
named on-disk snapshots. The another is to sweep out overflowed
data with least-recently-used or a similar policy. The swept data
are loaded again to an on-memory node by ReadRepair, described
below.

In the latter case, an on-memory storage engine node can be
regarded as a cache, that provides fast access and less persistence,
but can be filled at any time.
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5.2 Fault tolerance and Consistency

An on-memory storage engine node lose its data in case the node
fails. Even in the case, the heterogeneous cluster tries to keep
N replicas and maintain consistency between them. Cassandra’s
repair functions ReadRepair and HintedHandoff do them.

HintedHandoff stores changes for a record which should be
stored in a failed node to an alternative node. This function works
as same as for a persistent storage engine node, and prevents de-
crease of replicas. ReadRepair asynchronously resolves inconsis-
tency between replicas. When a proxy node notices an old replica
or a replica has been lost, it fills up consistent N replicas. It restores
replicas on an on-memory node after it restarts.

At least, the heterogeneous cluster achieves better performance
while keeping original Cassandra’s fault tolerance and consistency.
A heterogeneous cluster with a quorum (N, W, R) = (4,3,2)
having 2 write-optimized nodes, 1 read-optimized node and 1 on-
memory node achieves the same persistence as a Cassandra clus-
ter with a quorum (N, W, R) = (3, 2, 2) having 3 write-optimized
nodes because both have 3 persistent nodes. They show similar per-
formance for a write query because it is routed to 2 write-optimized
nodes in both cases. But the heterogeneous cluster performs better
for a read query. A read query is routed to 2 write-optimized nodes
in Cassandra, and 1 read-optimized node and 1 on-memory node in
the heterogeneous cluster.

If we regard the on-memory node as a cache, this heterogeneous
cluster has 3 persistent nodes as same as the Cassandra cluster and
an additional on-memory cache. We discuss such an on-memory
cache later.

In Section 4, the heterogeneous cluster places 3 replicas on 2
persistent nodes and 1 on-memory node. The cluster trades persis-
tence that the on-memory node do not provide for its performance.
But its fault tolerance is supported not only by persistence but also
by replicas and replica maintenance functions mentioned above.
Our future work includes quantitative evaluation of fault tolerance.
It requires fault models including failure probability and correlated
failures [8].

5.3 Fast but persistent devices

Non Volatile RAM (NVRAM) such as Magnetic RAM (MRAM)
is a possible storage device to build a read-and-write-optimized
storage engine. It provides persistence in addition to read and write
performance.

There are various storage devices including PCI-attached SSDs
and traditional HDDs in addition to standard SATA-connected
SSDs used in this paper. They have their own properties includ-

ing capacity, performance and cost. NVRAM seems to be a deliv-
erer but it is relatively expensive today. Available devices and the
properties are changing with the times. The heterogeneous cluster
enables performance coordination by combining them.

5.4 Memory usage

In the heterogeneous cluster, an on-memory node works like a
cache. There are other approaches to allocate memory resources.
For example, it has become common to place on-memory cache
such as memcached in front of data storages. We discuss the ap-
proaches here though detailed performance comparison between
them is part of our future work.

The front-end cache approach will achieve similar performance
to the heterogeneous cluster as long as the both approaches have the
same number of persistent nodes and on-memory nodes. The front-
end cache works if we accept data reliability in case that a datum is
from a single cache. For example, ECC memory will enable it. The
heterogeneous cluster enables reading from multiple replicas and
comparing them, and it can configure the number of the replicas by
nature.

At least, contribution of the heterogeneous cluster is providing a
novel method to utilize a read-and-write-optimized device includ-
ing memory. In addition, its flexibility of cluster configuration en-
ables new applications. For example, it allows simultaneous OLAP
workloads while processing OLTP queries. A heterogeneous clus-
ter stores written data to read-optimized nodes though it is asyn-
chronous. OLAP workloads requires sustainable read performance
that read-optimized nodes provide. Because of it, an existing write-
optimized cluster for OLTP cannot support it. A column-oriented
database [19], that is well-suited for OLAP workloads, is a promis-
ing candidate to be part of the heterogeneous cluster.

5.5 Disk/memory allocation to nodes

We assume that a server organizing a heterogeneous cluster equips
two disks to perform well. A node assigns a dedicated disk to a
Bigtable storage engine to process a write query fast with only
sequential I/Os.

Nodes on the same server in a heterogeneous cluster share
memory equipped with the server. Even distribution to those nodes
is the best if each storage engine consumes the same amount of
memory per record. But it is not the case though the difference
is usually less than an order of magnitude. There should be the
optimal distribution.

6. Related Work

This section introduces other modular cloud storages and efforts in
achieving both read and write performances.

Anvil [12] is a modular data storage which is composed of com-
ponents d7able. Anvil composes a data storage according to access
patterns of an application. Anvil tried to adapt to applications in a
single node. Our proposal also adapts to read heavy and write heavy
workloads by its modularity but the heterogeneous cluster supports
both workloads by combining different nodes as a distributed sys-
tem.

Cloudy [9] is a proposal for designing a modular cloud storage.
It will enables selection of routing scheme and load balance while
our proposal focuses storage engines and balance between write
and read performance.

Amazon Dynamo [7] adopted Berkeley DB, MySQL and in-
memory buffer as its storage engines. An user chooses an engine
according to the size of data.

There have been studies on indexing algorithms whose goals
include achieving both write and read performance. FD-Tree [11]
is an indexing algorithm that works efficiently on SSD. Its perform
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is close to B+-tree in searching and LSM-Tree in updating. Also, it
is expected to be adopted for cloud storages.

Fractal-Tree, which is an indexing algorithm implemented in
the recent MySQL’s storage engine TokuDB [21], are a drop-in re-
placement for B-Trees. B-Trees are slow for high-entropy inserts
because most nodes of the tree are not in memory and most in-
sertions require a random disk I/O, while Fractal-Tree effectively
replaces a random I/O with a sequential I/O, which is faster on spin-
ning disks. A modular data store can select an indexing algorithm
by selecting a storage engine implementing it. Our future work in-
cludes establishment of a method to select an appropriate storage
engine according to read/write ratio in an application.

Fractured mirrors [16] is a heterogeneous data store focusing
on data partitioning. This approach combines row-oriented N-ary
Storage Model (NSM) and column-oriented Decomposition Stor-
age Model (DSM) to operate queries efficiently. Our proposal com-
bines different types of nodes into a single distributed system. It is
possible to implement fractured mirrors based on our proposal.

7. Conclusion and Future Work

We proposed a method to build a cloud storage that supports both
read heavy and write heavy workloads. A heterogeneous cluster is
built from different types of nodes that are write-optimized, read-
optimized and read-and-write-optimized, that is, on-memory. We
provided those types of nodes by implementing a modular cloud
storage MyCassandra, that accepts various storage engines such
as MySQL and Redis. Benchmark results demonstrate that the
heterogeneous cluster achieved better throughput than the original
Cassandra on read heavy workloads. Read latency was up to 90.4%
lower and throughput was up to 11.00 times as high as those of
Cassandra.

One of our next steps is performance and scalability evaluation
of the heterogeneous cluster on servers offered by real cloud ser-
vices such as the Amazon Elastic Compute Cloud (EC2). We expect
that proposed method scales to a large number of nodes because the
query processing path does not depend on the the number of nodes,
i.e., from a single proxy to replicas. Therefore, our method is inde-
pendent of the number of nodes.

Next steps include consideration of network proximity. A net-
work connecting a cluster can be far from homogeneous due to rack
and data center boundaries. The proposed method places replicas
according to node characteristic on read and write performance,
but it is not obvious how to incorporate network proximity into the
method.

If an application developer knows the read/write ratio of his
or her application, a heterogeneous cluster has an opportunity to
adjust storage engine ratio to achieve the highest performance. We
are investigating a mechanism by which a cloud storage adjusts
itself to workloads. The concept of elasticity of a cloud will be
continuously extended to such autonomy.
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