
Churn Tolerance
Improvement Techniques
in an Algorithm-neutral DHT

Kazuyuki Shudo
Tokyo Institute of Technology

(Tokyo Tech)

Distributed Hash Table (DHT)

• Pure P2P key-value store
– Equal nodes construct it in

decentralized and autonomous ways
with no centralized node.

• Broad kinds of applications
– Name resolutions, …
– cf. dbm, Berkeley DB, …

– E.g. DNS
• “A Comprehensive Study of the DNS

Design with DHT-Based Alternatives”,
Proc. INFOCOM 2006.

– E.g. Amazon’s Dynamo
• “Dynamo: Amazon’s Highly Available

Key-value Store”, Proc. SOSP 2007.
• It’s a no-hop DHT.

put (key, value)
get (key)
remove (key, …)

Churn

• The continuous process of node arrival and
departure (join and leave)

• Decentralized distributed (peer-to-peer) systems
should be tolerant to churn.
– (Desirable) advantages of peer-to-peer systems

• Low management and providing costs
• High scalability
• Moderate or high reliability

– Approach
• XXX Reliable nodes -> higher costs
• OOO Accepts lower reliability and availability.

Supposes churn. Nodes leaves and join an overlay.

Summary

• Present churn-tolerance improvement
techniques for DHTs and their effects.

• Features of those techniques
– They do not depend on routing algorithms under the

DHT layer.
-> They work with any algorithm.

• Chord, Kademlia, Pastry, Tapestry, Koorde, …
Each has its merits and demerits.

• Contributions
– Gives an empirical proof of algorithm-neutral

churn-tolerance improvement techniques.
• I have implemented them in Overlay Weaver and measured

the number of successful requests.

Churn problems

DHT: an application of
structured overlays

• Along an abstraction in which a
DHT is an application of
structured overlays
– Put: a node routes/forwards a request to

the responsible node of the given key and
passes a key-value pairs to the node.

– Get: a node routes/forwards a requests to
the responsible node of the given key and
get a value from the node.

Routing
request

Originating
node

Responsible
node

ID space

holding the key-value pair

Key-based Routing Layer (KBR)

DHT CAST DOL
R

CFS I3PAST Scribe SplitStream Bayeux OceanStore

Tier 0

Tier 1

Tier 2

Cited from [Dabek03]

Routing layer

An abstraction of structured overlays by Dabek et al.

Churn problems

• A node cannot get a key-value pair
which has been put -> get failed

• Causes
– The key-value pair disappeared after the put (by node

departures).
– The responsible node does not have the key-value pair.

• Another node joined and became a new responsible node.
• Routing to put did not reach the responsible node (due to

incomplete routing tables and others).

– A request-relaying node left the overlay network.
(Note that this happens in recursive routing.)

Churn-tolerance
improvement techniques

Techniques and
effect measurement

• Implemented 4 techniques in the DHT layer.
– Replication
– Join-time transfer
– Multiple get
– Repeated implicit put

• Measured effects of those techniques with various routing
algorithms.
– Contributions: gives an empirical proof of algorithm-neutral churn-

tolerance improvement techniques.

DHT

Key-based Routing Layer (KBR)

CAST DOLR

CFS I3PAST Scribe SplitStream Bayeux OceanStore

Tier 0

Tier 1

Tier 2

We can choose
various routing

algorithms including
Chord, Kademlia.

• Features of those techniques:
They work with various routing
algorithms because they are
implemented in the DHT layer.

Overlay Weaver
implementation
• Overlay Weaver [Shudo08]

– A library of / a research platform for structured overlays.
– Adopts an abstraction by Dabek et al.
– Supports multiple routing algorithms and facilitates algorithm implementation.

• It includes Chord, Kademlia, Pastry, Tapestry, Koorde implementations.
– It works on a real network and emulates over 300,000 node on a single computer.
– It runs on PlanetLab with about 580 nodes and emulates DNS.

Messaging Service interface

Messaging service

Routing Runtime interface
Directory Service interface

Directory service

Routing algorithm

Routing Algorithm interface

DHT
DHT interface

Routing driver

Routing Service interface

Mcast

Mcast interface

Other
services

Storage Network

DHT
shell

Mcast
shell

Content
sharing

Distributed
File system

Grid info.
service

Content
distributionApplication

OS / Hardware

Corresponding

to KBR API

Application-level
IP Multicast

router

Routing
layer

Higher-level
services

Applications…

Visualization
tool

Preparation

• Routing layer returns a list of candidates for the
responsible node as a routing result.
– The order reflects how are the nodes adequate to be the

responsible nodes.
– 3 techniques (out of 4) utilize this list.

• In Dabek’s abstraction, the routing layer provides
replicaSet(key, max_rank). But
– It is only for replication.
– With no (empirical) proof.
– Locally called and completes on a single node.

Key-based Routing Layer (KBR)

DHT CAST DOLR

Tier 0

Tier 1

Routing layer

replicaSet(…)

Dabek’s abstraction

Implemented techniques

• Replication
– Replicates a key-value pair on multiple nodes when it is put.

• Join-time transfer
– A joining node receives key-value pairs from other nodes.

• Multiple get
– A node requests a key to multiple nodes, not only the

responsible node.

• Repeated implicit put
– A node puts key-value pairs it holds to the DHT

autonomously.

Replication

• Places a key-value pair on candidates for the
responsible node when it is put.
– Effects

• Part of replicas are available after the responsible node has left.

– Parameters
• The number of replicas.
• Which makes replicas, the originating node or the responsible

node?

2nd candidate
3rd candidate

Put request

When a pair is put
Responsible node

A replica is still available

After the responsible node has left

Responsible node
(1st candidate)

Considerations on replication

• It is possible to derive IDs for replicas from the put key.
– E.g. (1) key, (2) key XOR 010.. (3) key XOR 100.. (4) key XOR 110..
– This method increases the number of routing and traffic -> not adopted

• Which makes replicas, the originating node or the responsible
node?
– The number of times of communication is identical for both methods.
– Efficiency differs in case node’s ID and network proximity are related:

PIS (Proximity Identifier Selection)
-> not different because PIS is not adopted.

Responsible node

Put requests

Originating node makes replicas
Responsible node

Put request

Responsible node does

Join-time transfer

• Existing nodes transfer adequate key-value
pairs to a newly joined node.
– Method

• A newly joined node asks candidates for the node
responsible for ID of the joined node to transfer. Asked nodes
transfer key-value pairs which the joined node is responsible
for to the joined node.

– Effects
• A new responsible node which joined after the key-value pair

was put can return the pair.

– Parameters
• The number of nodes to be asked to transfer.

Previous responsible nodeNewly joined node
Responsible for a key

(1) Transfer request

(2) Key-value pairs transferred

Multiple get

• A node originating a get request ask multiple nodes.
– Effects

• It is possible to get a key-value pair which a node newly joined
after the pair was put is responsible for.

– The originating node can ask the old responsible node.
– Join-time transfer has the same effect.

• This technique can compensate for incomplete routing for a put
request.

– It is possible for routing not to reach the responsible node due to
incomplete routing table.

– Parameters
• The number of nodes asked.

2nd candidate
3rd candidate

Additional

get requests
Response to
a get request

Responsible node
(1st candidate)

Repeated implicit put

• Each node occasionally puts key-value pairs it has
onto the DHT.
– Makes replicas as same as the usual puts.
– This is the only technique which does not utilize the list

of candidates for the responsible node directly.

– Effects
• Fills replicas, which decreases as nodes leave the overlay.
• The same effect as join-time transfer. The new responsible node

can have pairs. But the effect is limited.
– Implicit puts have an interval -> transfer by implicit put involves a

time lag.
– This technique has the same effect as join-time transfer even if the

number of replicas is 1, though replicas cannot be filled.

– Parameters
• Time interval

– Randomly fluctuated not to be synchronized between nodes.

Causes of get failure
each technique deals with
• Replication: prevents replicas from disappearing.
• Repeated implicit put: fills up replicas.
• Join-time transfer and multiple get: let the newly

joined responsible node have key-value pairs.

√√Nodes on a route left

√
(effects limited)

√√Newly joined
responsible node

Responsible node
does not hold the pair

√
(requires replication)

√Disappeared key-
value pairs

Repeated
implicit put

Multiple
get

Join-time
transfer

Repli
cation

Techniques

Causes

Effects

How much each technique improve
the rate of successful get requests ?

Experiments
to measure effects of each technique

• On a single PC,
– 1,000 (virtual) nodes run
– with churn
– The number of successful

get requests were counted.

• Experiment scenario
– invokes 1,000 nodes
– lets all nodes join a DHT, one every 0.15 sec
– puts different 1,000 key-value pairs on the DHT, one every 0.2 sec
– gets all pairs from the DHT, one every 0.2 sec

• Conditions
– Random nodes did puts and gets
– Churn lasted during puts and gets
– Churn model: the number of nodes is constant <- a new node joins just after a node left
– Churn frequency is 2 times / sec -> the average of node life time is 500 sec
– Churn is timed by a Poisson process
– Communication timeout is 3 sec and routing timeout is 10 sec
– The interval of repeated implicit put is 30 sec

• Targets
– 5 routing algorithms Overlay

Weaver support.
– Iterative and recursive routing.
– All combinations of them.

• Environment
– Distributed environment emulator

of Overlay Weaver 0.6.4
– Java SE 5.0 Update 12 for x86

– Linux 2.6.21 for x86-64

– 2.8 GHz Pentium D

Results and observations
Every targets showed the same tendency

• Intuitive (natural) results
– Replicas improved success rates.
– Join-time transfer and multiple get improved success rates.

• Other observations
– In Pastry and Kademlia, join-time transfer (# of asked nodes: 2) is more effective

than multiple get (# of asked nodes: 2). Chord showed the opposite results.
– There were cases that 3 replicas showed better results than 4 replicas.

<join-time transfer>-<multiple get>

Gave an empirical proof of
algorithm-neutral

churn-tolerance techniques

Repeated put hided
the effects of other techniques

Results and observations (cont’d)

• Part of get requests still failed due to …
– Techniques could not cover up churn completely.

• All replicas disappeared, …
– A newly joined node has an incomplete routing table

for some time.
• Routing does not reach the responsible node.

– Communication timeout happened multiple times and
routing timeout happened.

• Note: Results here do not show superiority and
inferiority of routing algorithms.
– Each algorithm has its parameters and they were

fixed as the default settings of Overlay Weaver 0.6.4.
• E.g. stabilization interval in Chord

Now we see the techniques work.

So, how do we determine
- application of each technique and
- parameters of each technique ?

Cost performance

Considerations toward future work

Cost performance

• Performance
– presented as the rate of successful requests.
– Function of the rate.

• Cost: what increases with the techniques
– The number of times and traffic

of communication
– Time required to join, put and get

• Join-time transfer and multiple get requires additional time.

– Memory and storage consumption
• N replicas consume memory / storage N times.
• It can be very expensive in embedded environments.

– Processing by CPU
• Response, power consumption, …

Attention of
existing researches

Costs heavily depend on
application environments

System behavior
depending on applications
• Each technique requires costs at its own timings.

– For example,
• Join-time transfer is cheap if join and leave are rare.
• Repeated implicit put requires continuous costs even though neither

put nor get requests.

• Each application has its behavior.
– DNS: the number of get requests is much larger than put requests

-> multiple get is expensive.

√Repeated implicit put

√Multiple get

√Join-time transfer

√Replication

always (!)getputjoinTiming

Techniques

We have to consider system behavior depending on applications

Future work

• Calculate cost (vs. performance) taking
account of applications and environments.

• Applications
– DNS: put frequency << get frequency

– Sensor network: put ??? Get

• Environments
– E.g. The ratio of costs of storage and

communication

Related work
• Dabek’s Layered model of structured overlay [Dabek03]

– DHT is an application of structured overlay networks
– A function provided by the routing layer to implement replication:

replicaSet(key, max_rank)
• only for replication
• without (empirical) proof.

• Churn tolerance techniques implemented in Bamboo [Rhea04]
– Detection policy of failed nodes, timeout adjustment, proximity neighbor selection

(PNS)
– All techniques are for routing layer, not for DHT layer,

independent from techniques in this research and can be combined.

• Evaluation of DHT implementations using network emulator peeremu [Kato07]
– Authors evaluates DHT implementations including Bamboo, Chord, Accordion and

FreePastry. About 1,000 nodes ran on 10 or 20 PCs. They measured the rate of
successful get requests and the time required to get.

• Supernodes
– Only nodes elected as supernodes construct an overlay (DHT). They serve other

ordinary nodes.
– This architecture relaxes churn tolerance required for a DHT.
– Churn tolerance is still an important property.

Summary

• Presented a number of churn tolerance
techniques for DHT and demonstrated their
effects.
– All techniques are neutral to underlying routing

algorithms.

• Gave an empirical proof of algorithm-neutral
churn-tolerance techniques.

• Considered cost-performance and its calculation.
– To be considered

• Applications and their environments: PC, embedded, Internet,
wireless, …

• System behavior

References

• [Dabek03] F. Dabek et al., “Towards a Common
API for Structured Peer-to-Peer Overlays”,
IPTPS 2003, 2003.

• [Shudo08] K. Shudo et al., “Overlay Weaver: An
Overlay Construction Toolkit”, Computer
Communications, 2008.

• [Rhea04] S. Rhea et al., “Handling Churn in a
DHT”, USENIX ’04, 2004.

• [Kato07] D. Kato et al., “Evaluating DHT
Implementations in Complex Environments by
Network Emulator”, IPTPS 2007, 2007.

