

Overlay Weaver: An Overlay Construction Toolkit

Kazuyuki Shudo

http://overlayweaver.sf.net/

Overlay

- An network constructed over another network
 - e.g. Internet over a telephone network
 - e.g. Networks of file sharing programs
 - FastTrack, eDonkey2K, Gnutella, ...
 - with more than 1,000,000 nodes.
- Application-level network
 - constructed in a autonomic and decentralized way to keep performance and fault-tolerance with 1,000s and 1,000,000s nodes.
- Its topology is independent from the underlying network (i.e. Internet).
 - Then, called Overlay Network or Network Overlay.

Unstructured and Structured

Unstructured overlay

- e.g. Gnutella network, Winny network
- No (few) constraint imposed on which node to be a neighbor (topology).
- An existing object on it may be found.
- Generally, less-efficient but supports flexible (e.g. range) search.

• Structured overlay

target

- e.g. Network for distributed hashtable (DHT)
- An algorithm-based constraints imposed on which node to be a neighbor.
- An existing object on it is (almost) certainly found.
- Generally, efficient but it has been said to be weak in flexible search.

Overlay Weaver

Overlay Weaver

- We see analogies between structured overlays and weaving.
 - Chord, Tapestry, ...
- Overlay Weaver
 - A weaving device of (structured) overlays

Weaver

Overlay Weaver

- DHT Library
 - in Java
 - about 20,000 steps
 - licensed under ApacheLicense 2.0
 - ready to be applied to various purpose.

File Scale Scale Image 10 Space Style Lank & Feel Help
Resel Quit

Overlay Visualizer

• Properties

- supports application-layer/level multicast (ALM), not only DHT.
 - supports multiple lookup algorithms:
 - Chord, Kademlia, Koorde, Pastry, Tapestry, ...
- We can conduct experiments without writing code.
 - Operation with sample tools such as DHT shell and Mcast shells.
 - Measurement of # of messages, # of hops and ... with Emulator.
- A DHT is accessible via XML-RPC based protocol.
 - the same protocol as Bamboo and OpenDHT.

Overlay Weaver as an Open Source Software

- http://overlayweaver.sf.net/ (SourceForge)
 - released on 17th Jan, 2006.
 - Apache License 2.0
- Statistics (as of 19:00, 14th Jan, 2007)
 - 4,495 downloads
 - # of subscribers of mail lists
 - English: 54, Japanese 71
 - # of members of the mixi community: 122
- Expected users
 - Algorithm designers
 - Application developer
 - P2P storage of RDF documents by Dr. Matono (AIST)

Web site

Problems of overlay research

- Distance between algorithm research and applications
 - Research implementations are often only for simulation to ensure its scalability.
- Much work to implement an algorithm
 - At least, 1,000s lines of code.
 - hard to debug because of the nature of a large-scale distributed system.
- Difficulty in fair and realistic comparison between algorithm implementations
 - often simulated. e.g. p2psim.
 - But, system behavior is heavily implicated in how it is implemented. Comparison of real impls is important.

Overlay construction toolkit

- Connects algorithm research to applications directly.
 - Once an algorithm is implemented, it can be emulated and also works on a real network.
 - In Java, in natural programming: can write new Thread()
 - 4,000 nodes emulations and 200 nodes experiments on a PC cluster have been conducted.
 - We can design, implement and verify an algorithm with Emulator and the resulted implementation works on Internet.
- Related work different approaches
 - Bamboo, PIAX: supports both simulation and real-network, and needs special programming with an event-driven style.

Overlay construction toolkit

- Facilitates algorithm implementation.
 - We could implement well-known 5 algorithms just in 100s steps.
 - Chord, Kademlia, Koorde, Pastry and Tapestry.
 - And 2 variations of Chord
 - Chord impl is 619 steps and Pastry impl is 872 steps in Java.
 - Rapid development and quality improvement with Emulator, which enables emulation with 1,000s nodes.
- Related work different approaches
 - MACEDON: introduces an overlay describing language.
 - P2: introduces declarative overlay describing language OverLog.

Overlay Construction Toolkit

- Enables fair and realistic comparison between algorithm implementations.
 - Multiple algorithm implementations share OW components (e.g. communication).
 - Runs both on an emulator and on a real network.
 - -> fair and realistic comparison

Approaches to comparison between algorithm implementations

Overlay Weaver: Background

- Separation of lookup (routing) layer and higher-level services [Dabek03]
 - Frank Dabek et al., "Towards a common API for Structured Peer-to-Peer Overlays", Proc. IPTPS'03.
- A lookup layer is called key-based routing layer (KBR).
- Application (Tier 2) and higher-level services (Tier 1) can be independent from lookup algorithms (Chord, Pastry, ...)

Decomposition of lookup layer

- Algorithm implementation still needs much work.
 - incl. communication and RPC.
 - e.g. Chord impl of p2psim has 2,835 steps.
- To be easy
 - Not only your algorithm, but also other algos compared to with your one.
- We factored out common processes to algorithms.
 - Further decomposition of KBR layer.

Decomposition of lookup layer

- Facilitates algorithm implementation
- 2 lookup styles are exchangeable: iterative and recursive

Facilitation of algorithm impl.

- We could implement well-known 5 lookup algorithms just in 100s lines of code.
- Compared with:
 - MACEDON: an algo described in the dedicated language and converted to C++.
 - p2psim: in C++. An algo impl does RPC itself -> more lines.

Exchangeable lookup styles

- Both Iterative / recursive lookup styles work with each lookup algorithms.
 - due to decomposition of lookup layer.
 - Each style has its own strengths and weaknesses.

Components

Multiple implementations for each component, can be combined flexibly.

Routing Driver

NORTH Pyongyang

Seout A

SOUTH

Sycheto Horkon

- Iterative
- Recursive

- Messaging
 - UDP
 - TCP
 - Emulator
- Directory Service
 - Onmemory
 - checkpointing
 - BerkeleyDB

Distributed Env Emulator

 It reads a scenario and invoke and control multiple application instances.

- Very useful for test and debug of algorithms.
- Invokes threads for each instances.

```
# invoke 1000 instances
class ow. tool.dhtshell.Main
arg -p 10000
schedule 0 invoke
arg ptp00.hpcc.jp
schedule 500,500,999 invoke
# put & get
schedule 510000 123 put foo bar 300
schedule 515000 234 get foo
```

A scenario

Overlay Visualizer

- Visualizes nodes, messages and delivery trees for ALM at runtime.
- Reports of messages are also delivered via Messaging Service.
 - -> Visualizer works both on an Emulator and a real network.

Evaluation

NORTH HORSEN

A Pyongyang

KOREA

Seout A

SOUTH

KOREA

A TORYA

A TORYA

- Goals of Overlay Weaver
 - Connects algorithm research to applications directly.
 - Facilitates algorithm implementation.
 - Enables fair and realistic comparison between algorithm implementations.
- Goals broken down

- Means of confirmation
- Algorithm impl facilitated → The amount of code

 Supports test of algorithms (formerly shown)
- Supports test of algo impls 4,000 nodes ex
- Enables fair comparison
- Runs on a real network

7–4,000 nodes emulation

200 nodes experiments on a PC cluster

4,000 nodes emulation

- Possible.
- # of messages measured.
 - Scenario: put x 4,000, get x 4,000

- Conditions an commodity PC
 - 3.4 GHz Pentium 4
 - 1 GB RAM
 - Linux 2.6.15
 - Java 2 SE 5.0 Update 6

Note

- "Chord (Figure 6)" completes its routing table when joining.
- Iterative routing.

4,000 nodes emulation

- # of hops in lookups measured. Frequency of each # plotted.
 - Scenario: put x 4,000, get x 4,000

- Conditions an commodity PC
 - 1.7 GHz Pentium M
 - 1 GB RAM
 - Linux 2.6.15
 - Java 2 SE 5.0 Update 6

200 nodes PC cluster

- Possible
- # of messages measured.
 - Scenario: put x 500, get x 500

- Conditions 197 PCs
 in AIST Super Cluster
 - 3.06 GHz Xeon
 - Linux 2.4.24
 - Java 2 SE 5.0 Update 6

Note

- Graph sways because measurement interval is shorter.
 - Emu: 10 min
 - PC cluster: 1 min
- Iterative routing.

Summary

- Overlay Weaver is an overlay construction toolkit ...
 - Connects algorithm research to applications directly.
 - Rapid development and tests with Emulator and the resulted implementation runs on a real network.
 - Facilitates algorithm implementation.
 - Just in 100s steps of code.
 - Impls of well-known 5 algorithm are provided.
 - Enables fair and realistic comparison between algorithm implementations.