
Overlay Weaver: An Overlay Construction

Toolkit

Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi

Grid Technology Research Center, National Institute of Advanced Industrial
Science and Technology, AIST Tsukuba Central 2, Tsukuba, Ibaraki, 305-8568,

Japan

Abstract

A layered model of structured overlays has been proposed and it enabled devel-
opment of a routing layer independently of higher-level services such as DHT and
multicast. The routing layer has to include other part than a routing algorithm,
which is essential for routing. It is routing process, which is common to various
routing algorithms and can be decoupled from a routing algorithm.

We demonstrated the decomposition by implementing an overlay construction
toolkit Overlay Weaver. It facilitates implementation of routing algorithms and we
could multiple well-known algorithms just in hundreds of lines of code with the
toolkit. The decomposition also enables multiple implementations of the common
routing process. Two implementations the toolkit provides perform iterative and
recursive routing respectively. Additionally, to our knowledge, the toolkit is the
first feasibility proof of the layered model by supporting multiple algorithms and
the higher-level services.

Such modular design contributes to our goal, which is facilitation of rapid devel-
opment of realistic routing algorithms and their application. We demonstrates that
Overlay Weaver supports the goal by conducting large-scale tests and comparisons
of algorithms on a single computer. The resulting algorithm implementations work
on a real TCP/IP network as it is.

Key words: Overlay Network, Structured Overlay, Distributed Hash Table,
Emulation

1 Introduction

It is essential for large-scale Internet-wide applications to construct an application-
level network in an autonomous and decentralized way. Such a network is

Preprint submitted to Elsevier 6 December 2007

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

called an overlay network because it is based on the underlying physical net-
work, but its structure is different from the underlying network. An overlay
provides elemental functions to build distributed applications such as lookup
and multicast, and maintains performance and fault tolerance with more than
millions of computers.

It requires a fair amount of work to incorporate an overlay algorithm into
application software. For example, distributed hash table (DHT), a represen-
tative application of structured overlays, itself has thousands of lines of code
at least, because it needs various jobs like communication and storage man-
agement other than the overlay algorithm. Its application must be larger and
more complicated than it.

Dabek et al. proposed layered abstractions of structured overlays [1]. They
separated common services such as DHT, multicast and anycast from an un-
derlying routing layer. The model suggests that it enables separated design
and implementation of a routing layer named key-based routing (KBR) from
the common higher-level services.

The routing layer is monolithic even with the layered abstractions. Routing
algorithm is not the only part of the routing layer, which has to perform other
jobs including communication. Furthermore, the routing layer has to include
other part than a routing algorithm, which is the essential for routing. It is
routing process, which is common to various known routing algorithms. it can
be decoupled from a routing algorithm.

We demonstrated the decomposition by implementing an overlay construc-
tion toolkit Overlay Weaver [2]. We decoupled a routing algorithm from the
common routing process by designing a programming interface between them.
The interface has been able to support well-known algorithms, Chord, Pas-
try, Tapestry and Kademlia. Additionally, to our knowledge, the toolkit is
the first feasibility proof of the layered abstractions proposed by Dabek et al.
[1], because the toolkit provides the multiple routing algorithms and multiple
higher-level services such as DHT and multicast.

The decomposition facilitates development of routing algorithms. Implemen-
tations of the above-mentioned well-known algorithms are just in hundreds of
lines of code. The decomposition also allows multiple implementations of the
common routing process to be combined with routing algorithms. The toolkit
provides two implementations which perform iterative and recursive routing
respectively.

Such modular design contributes to our goal. It is facilitation of rapid devel-
opment of realistic routing algorithms and their application. Overlay Weaver
provides an emulator of distributed environment to support the goal. It enables
algorithm developers to test and improve their algorithms with large number

2

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

of nodes on a single computer. The resulting algorithm implementations work
in a real environment.

The following section discusses related work. We show a programming inter-
face, which separates the routing process from the algorithms in Section 3.
Section 4 describes the components and tools the toolkit provides and how
they support overlay design, implementation, evaluation, and comparison. In
Section 5, we demonstrate that we could implement various well-known algo-
rithms with little code. We also present the results of tests and comparisons
of the algorithms on a large scale.

2 Related Work

MACEDON [3,4] and Mace [5] are overlay construction software which support
multiple routing algorithms as does the Overlay Weaver.

A user describes an algorithm in MACEDON language, which is like C/C++
but specific to the overlay description. MACEDON translates the description
into executable C++ code. The generated code communicates using TCP or
UDP, and MACEDON can generate code for a network simulator ns even
though this is “partial support” [3]. MACEDON provides distributed hash
table (DHT) implementations, i.e., Chord and Pastry.

The amount of code MACEDON requires to describe an algorithm is compa-
rable to Overlay Weaver. The difference is only up to 50 percent of the amount
of code for Overlay Weaver (Section 5.1). MACEDON reduced the amount by
introducing a domain-specific language and Overlay Weaver achieved similar
results by the separation of routing process and algorithms. Possible problems
each approach introduces are as follows. MACEDON’s approach involves a
higher learning cost for dedicated language. On the other hand, routing driver
(Section 3) of Overlay Weaver provides no specific support to implementation
of unstructured overlays, which require a larger amount of code. However,
it is possible to implement unstructured overlays directly using the toolkit’s
messaging services (Section 4).

Experiments with MACEDON have been performed on an Internet emulator
ModelNet [6]. The number of underlying computers ranged from 2 to 50 in
the emulation. The maximum number of emulated nodes was only 1000 and
only experiments on overlay construction (routing table stabilization) was con-
ducted on such a scale. Compared with this, we demonstrate the emulation of
4000 nodes, which is discussed in Section 5.2.

The original length of IDs in Chord is 160 bits and 128 bits in Pastry. but

3

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

Key-based Routing Layer (KBR)

DHT CAST DOLR

CFS I3PAST Scribe SplitStream Bayeux OceanStore

Tier 0

Tier 1

Tier 2

KBR API

Fig. 1. Key-based routing (KBR) (Figure 1 from Dabek et al.[1])

both are 32 bits in MACEDON. The integer type int the dedicated language
provides is 32 bits and the shortened ID length might be a natural conse-
quence of this. We describe an algorithm in a general-purpose language (Java)
for Overlay Weaver and the expressive power of the language is sufficient to
represent any algorithm.

Mace [5] is a successive project following MACEDON. The ID length is 160
bits in Pastry, and this is not shortened.

An algorithm description for MACEDON or Mace is dedicated to one of rout-
ing styles, iterative and recursive. In opposition to them, a single description
for Overlay Weaver can work in the both styles.

There are libraries that implement structured overlays, such as Bamboo [7,8],
Chimera and Tapestry [9,10], Khashmir [11], FreePastry [12], SharkyPy [13],
and OPeN [14] that are all available. However, all the libraries support a single
algorithm and we do not have a choice.

P2psim [15] is a simulator for peer-to-peer protocols. It provides multiple algo-
rithm implementations such as Chord, Accordion, Koorde, Kelips, Tapestry,
and Kademlia. They are all DHT, which are structured overlays. In the Ac-
cordion proposal [16], Li et al. emulated 3000 nodes with p2psim to compare
the proposed algorithm with Chord.

Simulation has the advantage being reproducible. Emulation of a concurrent
system, which is what Overlay Weaver does, is non-deterministic and its results
are not constant. Algorithm implementations for p2psim on the other hand
do not work on a real network. They require a relatively large amount of
code because they include low-level processes such as remote procedure calls
(RPC). The amount of code is several times the length of code for Overlay
Weaver and MACEDON (Section 5.1).

3 Decomposition of Routing Layer

Dabek et al. called routing process on structured overlays key-based routing
(KBR) [1]. Following their model, higher-level services are constructed on the
KBR layer, which is tier 0. Such services include DHT, multicast, anycast and
message delivery.

4

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

Messaging service interface

Messaging service

Routing runtime interface
Directory service interface

Directory service

Routing algorithm

Routing algorithm interface

DHT

DHT interface

Routing driver

Routing service interface

Mcast

Mcast interface

Other

services

Storage Network

DHT
shell

Mcast
shell

Content
sharing

Distributed
file system

Grid info.
service

Content
distributionApplication

OS/Hardware

Corresponding

to KBR API

Application-level

IP Multicast
router

Routing

layer

Higher-level

services

Applications…

Fig. 2. Components of runtime in Overlay Weaver

Overlay Weaver also followed this model and the routing layer is separated
from the DHT service and multicasting service. The model enables choices of
multiple components for each layer and applications are combined with various
routing algorithms without any modifications.

It is desirable for application developers to be able to choose an algorithm
according to their purposes. On the other hand, algorithm developers want to
implement their algorithms easily and a number of algorithms are provided
and can be compared with their own algorithms. A toolkit can satisfy these
requirements by facilitating the implementation of algorithms.

However, the routing layer is monolithic even with the layered abstractions. Its
implementation requires a fair amount of work. Routing algorithm is not the
only part of the routing layer, which has to perform other jobs including com-
munication. Furthermore, we found that the routing layer includes other part
than a routing algorithm. It is routing process, which is common to various
known routing algorithms. it can be decoupled from a routing algorithm.

To facilitate the implementation of algorithms, we factored out the routing
process from the routing layer by designing a programming interface between
the common routing process and routing algorithms. Overlay Weaver provides
implementations of the common routing process and an algorithm developer
does not have to implement it. As a result, we could describe well-known
algorithms just in hundreds of lines of code (Section 5.1).

Figure 2 illustrates the components for organizing runtime in the toolkit. In
the figure, the routing driver and its subcontractors, the routing algorithm and
messaging service, correspond to the routing layer in Dabek et al.’s proposal
(Figure 1) [1]. The routing driver is a component that conducts the com-
mon routing process. The routing driver extracts routing information from
the routing algorithm to perform routing.

5

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

The toolkit can provide multiple implementations of common routing pro-
cesses due to decomposition. Two components are available and they are in-
terchangeable without any modifications to the implementations of algorithms.
They are different in their routing style. One performs iterative routing and
the other does recursive routing (Section 3.4).

3.1 Interface of Routing Algorithm

This section describes the interface for the routing algorithm exposed to the
routing driver. The following descriptions are in Java style because the toolkit
has been implemented in Java.

RoutingContext initialRoutingContext(

ID target)

This method returns the initial value of routing context, which is transferred
between nodes during routing. For example, in case of Koorde, the routing
context consists of i (the ID of imaginary node) and kshift in Figure 3 in
Kaashoek et al. [17]. Here target is the target ID for routing.

IDAddressPair[] closestNodes(ID target,

int maxNumber, RoutingContext context)

This method returns a sorted array of nodes whose IDs are closest to the
specified ID target. Note that the definition of closeness varies according to
each algorithm. The maximum number of returned nodes is maxNumber. The
routing driver treats the returned nodes as candidates for the next hop in
order. One of the returned nodes may be a node executing this method itself.

An argument context is null for an algorithm which does not need the rout-
ing context. An implementation of an algorithm can return a context by at-
taching it to a candidate for the next hop.

Here ID is a type, which represents a key for routing and the ID of a node. An
instance of IDAddressPair is a pair made up of an ID and a communication
address. With UDP and TCP implementations of the messaging service, an
address is a pair made up of an IP address and a port number.

IDAddressPair[] adjustRoot(ID target)

This method is invoked in the last stage of routing on a node whose ID is
closest to the target ID for routing. An argument target is the target ID.
This method returns candidates for the root node, which is the goal of routing.
Where the node itself is the root, it returns null or an empty array.

6

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

void join(IDAddressPair[] route)

When a node tries to join an overlay, the routing driver conducts routing using
the ID of the joining node as the target ID. This method is invoked on the
joining node after routing. The argument route is the resulting route from
the joining node to the root node (before routing).

void join(IDAddressPair joiningNode,

IDAddressPair lastHop, boolean isRootNode)

This method is invoked on every node on the resulting route while routing to
a joining node. The argument joiningNode is the joining node and lastHop

is the previous node on the route. True is given as the argument isRootNode
if the root node executes this method, otherwise false is given.

void touch(IDAddressPair from)

This method is called when a node, on which the algorithm implementation
is running, receives a message from from.

void forget(IDAddressPair node)

This method instructs a node to exclude the node node from its routing table.
A node executes this method when it fails to communicate with node a certain
number of times sequentially.

BigInteger distance(ID to, ID from)

It returns the distance between two specified IDs. Here BigInteger is a type
that represents multiple-precision integers.

This method is not part of the routing algorithm interface. It is not called by
the routing driver and is only used internally in algorithm implementations
even though it has been commonly believed that this function affects the
character of a routing algorithm. Practically, there are a certain number of
algorithms which implement this method, but an implementation of a routing
algorithm does not have to expose this method to the routing driver.

3.2 Interface Implementation by Each Algorithm

Overlay Weaver provides implementations of well-known routing algorithms,
Chord, Pastry, Tapestry, and Kademlia. Table 1 lists which method for the
routing algorithm interface is implemented by each algorithm. The two joins
in the table correspond to the joins in Section 3.1 in order. The core of the

7

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

Table 1
Correspondence between methods specified by Routing Algorithm interface and
routing algorithms

Chord Pastry Tapestry Kademlia

closestNodes × × × ×
adjustRoot × ‡1
join(1) ×
join(2) × ×
touch × × × ‡3
forget × × × ×
distance × × ‡2 ×

interface is closestNodes. The routing driver requires all algorithm imple-
mentations to provide it. It tends to have more code than the other meth-
ods because of its importance. In case of Kademlia implementation, its logic
(Kademlia.java) consists of 171 lines of code and closestNodes has 69 lines,
which is over 1/3 of the logic.

Chord implements adjustRoot (‡1). With Pastry, Tapestry, and Kademlia,
the routing driver can reach the root by following the closest nodes on nodes
because the closest node is the root node. However, in Chord, the closest
node’s successor is the root node. Because of this, adjustment is required after
the closest node is found. The adjustRoot does the adjustment.

Tapestry does not use the distance between IDs for routing. It determines the
next hop according to its own procedure. Tapestry is not required to implement
distance because of this (‡2). Pastry does not use the distance in a stage of
routing involving the routing table either. However, Pastry uses distance to
sort nodes in the leaf set which is used in the last stage of routing.

When touch is called, an implementation of the algorithm adds the speci-
fied sending node to its routing table. Although this behavior is peculiar to
Kademlia in the four implemented algorithms (‡3), the Pastry and Tapestry
implementations this toolkit provides follow this behavior.

3.3 Algorithm-dependent Process

A node on an overlay generally has to construct and maintain its own routing
table, which is required to perform routing in a decentralized and autonomous
way. Certain algorithms send and receive messages to construct or maintain
their routing tables.

8

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

Table 2
Routing Driver’s capabilities utilized by routing algorithms

Chord Pastry Tapestry Kademlia

(1) Confirmation of other nodes’ aliveness × × ×
(2) Sending/receiving message × × × ‡1
(3) Routing to root node × ‡2
(4) Routing to closest node × ‡3

The toolkit itself does not communicate this way because it is heavily de-
pendent on each algorithm. On the algorithm-side, the routing algorithm has
to perform this by itself. The routing driver provides part of functions that
the routing driver and messaging service have for the routing algorithm. The
functions that are provided are as follows. They have been utilized via the
routing runtime interface in Figure 2.

(1) Confirmation of other nodes’ aliveness by sending/receiving a PING and
ACK

(2) Sending/receiving an arbitrary message
(3) Routing to the root node of the specified ID
(4) Routing to the node which is closest to the specified ID

An implementation of the routing algorithm can confirm other nodes’ aliveness
just by invoking the function provided by the routing driver.

Table 2 lists which function is utilized by each algorithm.

One of characteristics of Kademlia [18] is that it does not perform any com-
munication to construct or maintain a routing table. A node maintains its
routing table by observing the communication for routing. The implementa-
tion of Kademlia in the toolkit does not send or receive algorithm-dependent
messages (‡1) and invocations of touch cause the routing table to be main-
tained.

Chord implementation needs routing to the root node to construct its finger
table (‡2).

In Section 3.2, we mentioned that the closest node is not the root node in
Chord. Overlay Weaver provides two implementations of Chord (Section 4.5),
and one of these, which completes the routing table when joining an overlay,
requires routing to the closest node (‡3) in addition to routing to the root
node.

9

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

0

1
2

3

(1)

(2)

(3)

(4)

(5)
(6)

route

0

1

2
3

(1)

(2-1)

(2-2)

(4-1)

(3-1)

(3-2) (4-2)

route

a. Iterative routing b. Recursive routing

0

1
2

3

(1)

(2) (3)
(4) (7)

(8)

route

(5)

(6)

c. Iterative routing (by Overlay Weaver)

Fig. 3. Routing styles

3.4 Routing Process

Overlay Weaver provides two implementations of the routing driver, which
conducts common routing processes. The two perform iterative routing and
recursive routing [7]. A user of the toolkit can choose either one at runtime.

Figure 3 illustrates communication for both styles of routing. The circle and
arrow including the dotted arrow stand for a node and a message being passed.
The numbers in parentheses indicate the order the message is passed in. As
the figure shows, the node that initiated routing in the iterative style issues
queries to each node along the route. A query is forwarded along the route in
the recursive style.

The dotted lines in Figure 3 stand for messages being passed that are not
necessarily performed in usual iterative/recursive routing. The (5) and (6) in
Figure 3 c indicate a query and a response for adjustRoot (Section 3.1). In
the algorithms the toolkit provides, only Chord requires adjustRoot to be
implemented and the other algorithms do not cause (5) or (6).

The dotted lines in Figure 3 b are responses to routing queries and they are
just to confirm queries have been delivered. The routing driver sends and re-
ceives them to carry out routing with unreliable transport like UDP. However,
a node on the route gives priority to the forwarding of a routing query over
confirmation. Because of this, recursive routing is expected to have a shorter
routing time than iterative routing [19] where communication latency domi-
nates.

The number of messages passed in single routing is as follows: 2n in itera-
tive routing and 2n + 1 in recursive routing except algorithms that require

10

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

adjustRoot like Chord. Here n is the number of hops. This is 2(n + 1) in the
case of iterative routing with algorithms that need adjustRoot. Note that
the TCP implementation of messaging service (Section 4) sends a response via
the same connection for a query corresponding to the response. It also does
connection pooling. Due to this, establishment of connections, which takes a
relatively long time, is carried out just n + 1 times at maximum.

Routing with Kademlia and Concurrent Queries In routing with Chord,
Pastry, and Tapestry, a node determines the next hop to be a node whose ID
is closest to the target ID to the best of its knowledge. Kademlia performs
routing differently. A node in Kademlia maintains multiple k nodes whose IDs
are closest to the target ID during routing and it sends queries to all nodes it
keeps [18].

A routing driver implementation performing iterative routing can issue mul-
tiple queries concurrently. Queries before adjustRoot such as (1) and (3) in
Figure 3 c can be issued concurrently. In Kademlia, 3 queries run concurrently
[18]. We can specify this concurrency parameter at runtime.

The iterative routing implementation can perform Kademlia-style routing and
concurrent queries. The reason it has not been implemented in the recursive
routing implementation is the difficulty in avoiding wasteful duplicated queries
being sent to a node. In iterative routing, it is normal for the initiating node
to maintain a set of nodes that have been queried and it is easy to avoid dupli-
cated queries. However, in recursive routing, concurrent queries are performed
by multiple distributed nodes and it is not a trivial matter to share such sets
between nodes. Nevertheless, concurrent queries are possible with circulation
avoiding techniques common to flooding and gossip, in which a queried node
replies that it has dealt with a similar query. These techniques permit many
duplicated queries.

An existing problem is how to perform concurrent queries efficiently in recur-
sive style.

4 Toolkit Structure

This section describes runtime and tools being organized into Overlay Weaver,
an overlay construction toolkit. We explain how these support algorithm de-
sign, testing, and comparisons.

The toolkit consists of the components outlined in Figure 2 and the following
tools.

11

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

• Distributed environment emulator
• Scenario generator
• Message counter
• Messaging visualizer

There are multiple components for parts of runtime other than the routing
driver and routing algorithm and users can choose one of these. As an example,
the toolkit provides the following four components.

• UDP implementation
• TCP implementation
• Emulating implementation, which performs inter-thread communication (for

emulator)
• Emulating implementation, which performs inter-thread communication over

a network (for distributed emulator)

The UDP component implements the UDP hole punching technique, which
enables a node to join an overlay from the inside of a NA(P)T router if the
router is compatible with the technique.

Three components are provided for the directory service. These offer the func-
tion of a local hash table, which the DHT service utilizes.

• An implementation based on the Berkeley DB Java Edition [20]
• On-memory implementation using a hash table in the standard class library

of Java
• On-memory implementation, which saves its data in persistent storage pe-

riodically

4.1 Higher-Level Services and Sample Applications

Higher-level services are implemented on the routing layer described in Sec-
tion 3. Applications are expected to use them rather than using the routing
layer directly (Figure 2). The toolkit provides the Mcast in addition to DHT
as higher-level services. It performs a multicast on an overlay. An application
joins and leaves a multicast group, which is identified by an ID, and multicasts
messages to all nodes in the group. An application can be directly aware of the
distribution tree for a multicast. One sample application, the IPv4 multicast
router, uses this feature.

The toolkit provides sample applications, i.e., the DHT shell and Mcast shell,
which use DHT and Mcast services. We can invoke these services and con-
trol them via a character terminal and network. An algorithm developer can
use these shells and the emulator (Section 4.2) together to test a new algo-

12

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

Scenario sequencer

Emulation
scenario

Application
instance

Messaging service (for Emulator)
Inter-node

communication

App. App.

Invoke and
control (Input) Output

… … App. …
…

Parse

Write or
generate

Distributed emulator
consists of processes
on multiple computers.

Process

Process

OutputInvoke

Fig. 4. Structure of emulator

invoke the 1st instance
class ow.tool.dhtshell.Main
schedule 0 invoke
invoke 999 instances with an argument "emu0" every 500 msec
arg emu0
schedule 500,500,999 invoke
send a put request to a node invoked 124th 510 sec from the start
schedule 510000 control 123 put a_key a_value bar 300
send a get request to a node invoked 235th 515 sec from the start
schedule 515000 control 234 get a_key

Fig. 5. An example of a scenario

rithm and compare it with existing ones. Section 5 demonstrates that such
comparison is possible.

4.2 Emulator

The toolkit includes the Distributed environment emulator, which can host
thousands of nodes on a single computer. Algorithm developers can improve
new algorithms and their implementations rapidly by testing them iteratively
on the emulator. The developers can also make large-scale and fair compar-
isons of new and existing algorithms by running the same emulation scenario
for different algorithms. Additionally, implemented algorithms work on a real
network in addition to the emulator. The toolkit gives the results of algorithm
research to applications directly.

Figure 4 illustrates the structure of the emulator. There are two ways to
run the emulator, running it on a single computer and combining multiple
computers to run it. In both cases, the emulator reads and executes the same
emulation scenario. The emulator assigns a virtual hostname to an invoked ap-
plication instance. The messaging service deals with communication between
virtual hosts. It forwards a message from a virtual host to another one with its
best effort. In case that multiple computers host a single emulator, a message
is encapsulated and forwarded via UDP or TCP between the computers. In

13

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

Fig. 6. Messaging visualizer

both cases, output from applications is collected and printed out to the user’s
console, making it easy to analyze output after emulation.

Figure 5 shows an example of a scenario. A scenario file first has instructions to
invoke application instances, which include a class name and arguments. The
scenario sequencer reads the instructions and invokes application instances
as threads. The scenario can also have instructions executed by the invoked
instances. An instruction consists of strings given to the instance, an identifier
of the instance, and time for the instruction to be given. The instruction
is given via standard input and it can take any form which the application
accepts. For example, the DHT shell (Section 4.1) accepts instructions to
print out a routing table, and suspend and resume a node, in addition to
putting, getting and removing a key-value pair.

We can produce a scenario in various ways as though writing it by hand and
generating it by computer. It is a promising way to convert a real-world trace
into a scenario for the emulator. The toolkit includes the scenario generator
and it is also possible to generate simple scenarios driving DHT shells by it.

4.3 Message Counter

Implementations of the messaging service can report all communications via
the network. The message counter is a tool that receives reports and counts
them for all message types.

Logging and analyzing the log is generally a powerful method of observing
communication after an execution finished. The message counter enables such
statistics to be collected in the execution time.

4.4 Messaging Visualizer

The messaging visualizer is a tool to visualize nodes and communication be-
tween them at the time this happens. Figure 6 shows screenshots of the tool.

14

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

It draws a node at a position according to its ID on a circle, a line, or various
shapes. The arcs drawn between nodes stand for messages between them. The
tool also draws distribution trees constructed for a multicast.

This tool supports an intuitive understanding of algorithm behavior. Not only
does it facilitate tests of algorithm implementations but it is also useful for
demonstrating algorithms.

The visualizer collects communication reports with the same facilities as the
message counter. This enables the visualizer to work both on an emulator
and a real network, but it involves the same number of messages sent to the
visualizer, double the number on a network.

The visualizer imposes a burden on an emulator by visualization in addition
to doubling the number of messages. This results in reducing the maximum
number of emulated nodes. We confirmed that up to 300 nodes could be visu-
alized on a 1.7 GHz Pentium M processor running on Linux 2.6.15 on VMware
hosted by Windows XP.

4.5 Algorithm Implementations and Parameters

Overlay Weaver provides implementations of well-known structured overlay
algorithms, i.e., Chord, Pastry, Tapestry, and Kademlia. This section describes
the details and parameters used in Section 5.

Chord The toolkit implements not only a normal algorithm with the stabi-
lizing process but also the one in Figure 6 in Stoica et al. [21]. In the latter
algorithm, a node completes its routing table when joining an overlay. We call
the latter “Chord-Fig6”.

The interval of calls for the procedure stabilize is first 10 seconds. This is
being expanded up to 120 seconds where the routing table does not change.
The interval of fix fingers is a value equals to or between 5 seconds and 600
seconds according to how the finger table is accomplished.

Pastry The length of a digit in an ID is set to 4 bits (b = 4) even though it
is configurable at runtime. The size of a leaf set is set to 8 (|L| = 8).

The implementation performs “periodic routing table maintenance” as de-
scribed in Section 2.2 of Castro et al. [22] even though it is different from
the original Pastry proposal [23]. The interval for maintenance is set to 60
seconds.

15

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

0

500

1000

1500

2000

2500

3000

Chord Pastry Tapestry Kademlia

s
t
e
p
s

Overlay Weaver

MACEDON
Mace

p2psim

Fig. 7. Lines of code for each routing algorithm

Tapestry The implementation treats an ID as a sequence of hexadecimal
digits (β = 16) following Zhao et al. [9]. This is the same parameter as in
Pastry.

Current implementation has neither backup links (c = 1) nor backpointers.

A node reactively detects failure in other nodes by failure in communication
for routing. Note that a node sends periodic queries to detect failure if it
follows Zhao et al.’s algorithm [9] completely.

Kademlia The length of the k-bucket is set to 20 following the Kademlia
paper [18] (k = 20). The number of nodes maintained during routing, whose
IDs are closest to the target ID is also 20 according to the paper. However,
the number of closest nodes returned by a queried node is set to 5, not 20.

The concurrency parameter for concurrent queries (Section 3.4) is set to 3
according to the paper (α = 3).

5 Evaluation

One of our goals was to give results of algorithm research to applications
directly. Overlay Weaver facilitates algorithm design and implementation to
achieve that goal. In this section, we evaluate the toolkit in terms of the
following four aspects that reflect this goal.

• Easy implementation of structured overlay algorithms
• Confirmation of behavior of algorithms by large-scale emulation
• Fair comparison of algorithms
• Work on real network

16

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000
Time (seconds)

M
e
s
s
a
g
e
s
 /
 s
e
c
o
n
d
 /
 n
o
d
e

Chord

Chord-Fig6

Kademlia

Pastry

Tapestry

Fig. 8. Number of messages per second per node being passed between emulated
4000 nodes (iterative routing)

5.1 Amount of Code Implementing Algorithms

Figure 7 shows the lines of code required to implement routing algorithms
compared with MACEDON 1.2.1 [3,4], Mace 0.9 [5] and p2psim 0.3 [15]. The
version of Overlay Weaver is 0.6 here. Here the shown numbers are lines of
code except blank lines and comments.

We could implement all algorithms just in hundreds of lines of code with
the toolkit. Pastry needed most code but this was only about 1000 lines even
though it contains 148 lines of code to output string and HTML representation
of a routing table. This resulted from the decomposition of the routing layer
(Section 3).

Compared with MACEDON, which provided a domain-specific language, Chord
implementation with Overlay Weaver required less than 2 times as much
code as MACEDON. Overlay Weaver needed almost same amount of code
as MACEDON to implement Pastry. P2psim involved relatively more code
because algorithm implementation itself involved low-level processes such as
communication and RPC. Note that the Chord implementation for MACE-
DON is a subset of what described in Stoica et al. [21]. The size of an ID is 32
bit, not 160 bit, and the number of successors which a node can keep is just
one.

5.2 Emulation of 4000 Virtual Nodes

This section presents the results of emulating 4000 nodes to demonstrate that
large-scale emulation is possible. Note that the purpose of the following exper-
iments was not to compare algorithms but rather demonstrate that the toolkit
enables evaluation and a fair comparison of algorithms.

We ran the following experiments on a computer with a 3.4 GHz Pentium 4
processor (Prescott), 1 GB of memory, and Linux 2.6.15. The Java runtime

17

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000
Time (second)

M
e
s
s
a
g
e
s
 /
 s
e
c
o
n
d
 /
 n
o
d
e

Chord

Chord-Fig6

Pastry

Tapestry

Fig. 9. Number of messages per second per node being passed between emulated
4000 nodes (recursive routing)

we used here was the Java 2 Standard Edition (J2SE) 5.0 Update 6.

Figures 8 and 9 are proofs that Overlay Weaver supports quantitative compar-
ison of algorithms by large-scale emulation. They plot the average number of
messages per second per node in emulations of 4000 nodes. The numbers are
the average for 10 minutes. The emulation scenario was as follows. After 4000
nodes had joined an overlay every 6 seconds, all nodes waited 100 seconds.
A node put a value on a DHT every 2 seconds 4000 times. All nodes waited
100 seconds. A node got a value from a DHT every 2 seconds 4000 times. We
determined which node does the puts and gets randomly when generating a
scenario with the scenario generator.

We can generally evaluate and compare algorithms by logging and analyzing
the logged results. This method is sufficient for metrics that a node can cal-
culate alone, such as the amount of data a DHT service is keeping and how
a routing table converges. Logging with time stamps is effective to investi-
gate metrics that involve multiple nodes. We can collect the log and extract
intended results. Otherwise, we can utilize the message counter (Section 4.3)
for this purpose. The numbers in Figure 8 and 9 were counted by the message
counter.

Figure 8 and 9 plot behavior of the implemented algorithms, which was as
follows.

• Chord and Pastry sent more messages than Kademlia and Tapestry because
the two sent messages periodically to maintain overlays.

• Chord-Fig6 sent a large number of messages to complete routing tables
when joining an overlay.

• Kademlia sent and received PING and ACK messages to determine whether
to keep or to replace a node in a routing table. Kademlia sent more messages
even when performing put/get because every transmission of messages could
trigger off this confirmation.

We demonstrated that it was possible to emulate 4000 nodes with a common

18

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

110
120
130
140
150
160
170
180

Chord Chord-

Fig6

Pastry Tapestry Kademlia

M
B

Iterative routing

Recursive routing

Fig. 10. Memory consumption by emulator while running 1000 nodes

PC to investigate the behavior of algorithms. This section also outlined meth-
ods of collecting data for a fair comparison of algorithms and presented results
produced by the message counter.

Scalability of Emulator The following are factors that possibly restrict
the number of nodes an emulator can host.

• Number of threads the OS kernel and command-line shell allow
• Size of virtual address space
• Amount of physical memory
• Processing throughput of computer

These parameters and which ones will become bottlenecks depend on specific
computers.

Linux 2.6.15, we used here, could manage up to 32768 threads by default on a
single computer when running on a 32 bit processor. The number of threads
a user process can create is a half of 32768. Because a DHT shell requires up
to 4 threads a node, this version of Linux could emulate about 4000 instances
of it.

As the number of emulated nodes is increased, the virtual address space as-
signed to the stack for each thread can starve. For example, where 256 KB of
memory is assigned to a thread, only 16384 threads can be created on a 32
bit processor because it provides up to 4 GB of virtual address space. In such
cases, we can invoke more threads by adjusting the amount of memory for the
stack.

Figure 10 plots the amount of memory an emulator consumes when it runs
1000 nodes of the DHT shell. The numbers are resident set size (RSS) for
the emulator process. The RSS shows the amount of memory consumed by a
process because the computer we used did not have paging space on the disk.
The 1000 nodes consume only 177 MB of memory with Chord, which required
the most memory in the algorithms we investigated. Because of it, we can
estimate that a computer with 1 GB of free memory can emulate about 5000
nodes without other constraints such as number of threads.

19

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000
Time (seconds)

M
e
ss

a
g
e
s

/
se

co
n
d
 /

 n
o
d
e

Chord
Chord-Fig6
Kademlia
Pastry
Tapestry

Fig. 11. Number of messages per second per node passed between real 197 computers
(iterative routing)

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000
Time (seconds)

M
e
ss

a
g
e
s

/
se

co
n
d
 /

 n
o
d
e

Chord

Chord-Fig6

Pastry

Tapestry

Fig. 12. Number of messages per second per node passed between real 197 computers
(recursive routing)

5.3 Test on Real Network

In this section, we also demonstrate that Overlay Weaver can work on a real
network. We conducted experiments with 197 computers, which consisted of
196 PCs with 3.06 GHz Xeon processors in addition to the PC described in
Section 5.2. All PCs had a Gigabit Ethernet interface. The 196 PCs were part
of the AIST Super Cluster (ASC) and connected to a single Ethernet switch.
The bandwidth between the 196 PCs and the remaining PC was also 1 Gbps.
Linux 2.6.24 ran on the 196 PCs and the Java runtime was J2SE 5.0 Update 6.
We invoked a DHT shell on each computer and controlled them via a network.

Figures 11 and 12 plot the average number of messages per second per node.
The numbers are the average for a minute. We counted the numbers using
the message counter. The control scenario was as follows. After 197 nodes had
joined an overlay every 8 seconds, all nodes waited 100 seconds. A node put
a value on a DHT every 2 seconds 500 times. All nodes waited 30 seconds.
A node got a value from a DHT every 2 seconds 500 times. We determined
which node does the puts and gets randomly similar to Section 5.2.

This experiment demonstrated that the toolkit works on a real network with
about 200 computers.

20

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

6 Conclusion and Future Work

This paper described the design of the toolkit called Overlay Weaver, which
we have been developing as the groundwork for future research on overlay
algorithms. We demonstrated that it is possible to implement various well-
known routing algorithms just in hundreds of lines of code with the toolkit, and
we investigated their behavior by emulating 4000 nodes on a single computer.
It was also demonstrated that about 200 computers on a real network can
construct an overlay.

We described a programing interface that decouples a routing algorithm from
the common routing process. This decomposition facilitated algorithm im-
plementation and enabled multiple implementations of the common routing
process.

We are promoting use and application of the toolkit by third parties. The pro-
motion is getting results including algorithm and application implementations.
A party has implemented Symphony [24] and the other reported their imple-
mentation of EpiChord [25] with the toolkit. Applications reported include
RDF document search and statistics of web accesses.

Our future work includes the following.

• Implement other algorithms to reinforce the adequacy of the design of the
routing algorithm interface. We could implement Koorde [17] after imple-
menting the algorithms demonstrated in the paper.

• Conduct larger scale experiments. For example, a 64 bit computer with a
memory more than 4 GB and a distributed emulator with multiple comput-
ers will enable it.

• Investigate how the toolkit supports unstructured overlays.

References

[1] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, Ion Stoica, Towards
a Common API for Structured Peer-to-Peer Overlays, Proc. IPTPS’03 (2003).

[2] Overlay Weaver: An Overlay Construction Toolkit, http://overlayweaver.
sourceforge.net/ .

[3] Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan Kostić, MACEDON:
Methodology for Automatically Creating, Evaluating, and Designing Overlay
Networks, Proc. NSDI’04, pp.267–280 (2004).

[4] The MACEDON project, http://macedon.ucsd.edu/ .

21

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

[5] The Mace project, http://mace.ucsd.edu/ .

[6] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić,
Jeff Chase and David Becker, Scalability and Accuracy in a Large-Scale
Network Emulator, Proc. 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02) (2002).

[7] Sean Rhea and Dennis Geels and Timothy Roscoe and John Kubiatowicz,
Handling Churn in a DHT, Proc. USENIX ’04 (2004).

[8] The Bamboo Distributed Hash Table, http://www.bamboo-dht.org/ .

[9] Ben Y. Zhao, others, Tapestry: A Resilient Global-Scale Overlay for Service
Deployment, Journal on selected area in communications, Vol.22, No.1, pp.41–
53 (2004).

[10] Chimera and Tapestry, http://p2p.cs.ucsb.edu/chimera/ .

[11] Khashmir, http://khashmir.sourceforge.net/ .

[12] FreePastry, http://freepastry.org/FreePastry/ .

[13] SharkyPy, http://www.heim-d.uni-sb.de/ heikowu/SharkyPy/ .

[14] OPeN library, http://p2p.cs.mu.oz.au/software/OPeN .

[15] p2psim: a simulator for peer-to-peer protocols, http://pdos.csail.mit.edu/
p2psim/ .

[16] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, Bandwidth-
efficient management of DHT routing tables, Proc. NSDI’05 (2005).

[17] M. Frans Kaashoek and David R. Karger, Koorde: A simple degree-optimal
distributed hash table, Proc. IPTPS’03 (2003).

[18] Petar Maymounkov and David Mazières, Kademlia: A Peer-to-peer Information
System Based on the XOR Metric, Proc. IPTPS’02 (2002).

[19] Frank Dabek and Jinyang Li and Emil Sit and James Robertson and M.
Frans Kaashoek and Robert Morris, Designing a DHT for low latency and high
throughput, Proc. NSDI’04, pp.85–98 (2004).

[20] Berkeley DB Java Edition, http://www.sleepycat.com/products/bdbje.html .

[21] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications, Proc. ACM SIGCOMM 2001, pp.149–160 (2001).

[22] Miguel Castro, Manuel Costa, Antony Rowstron, Debunking some myths about
structured and unstructured overlays, Proc. NSDI’05 (2005).

[23] Antony Rowstron, Peter Druschel, Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems, Proc. Middleware 2001 (2001).

22

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

[24] Gurmeet Singh Manku, Mayank Bawa, Prabhakar Raghavan, Symphony:
Distributed Hashing in a Small World, Proc. USITS ’03 (2003).

[25] Ben Leong, Barbara Liskov, Erik Demaine, EpiChord: Parallelizing the Chord
Lookup Algorithm with Reactive Routing State Management, Proc. ICON 2004,
Vol.1, pp.270–276 (2004).

23

Computer Communications (Special Issue on Foundations of Peer-to-Peer Computing),
Elsevier Science, Volume 31, Issue 2, pp.402-412, February 5, 2008

(available online on August 14, 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

