
P3: P2P-based Middleware Enabling Transfer and
Aggregation of Computational Resources

Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi

Grid Technology Research Center
National Institute of Advanced Industrial Science and Technology

AIST Tsukuba Central 2, Tsukuba, Ibaraki, 305-8568, Japan
shudo@ni.aist.go.jp, {yoshio.tanaka,s.sekiguchi}@aist.go.jp

Abstract
This paper presents middleware enabling mutual and

equal transfer of computing power between individuals,
as in the original idea behind P2P, while also support-
ing large-scale distributed computation utilizing hetero-
geneous PCs. This goal is strongly supported by a net-
work overlay over which peers can communicate with
each other directly and bidirectionally. We made use of
a general-purpose P2P library, JXTA, supporting the
common requirements of P2P software, including net-
work overlay. Other features of the P2P library, such
as ad-hoc self-organization, discovery and grouping of
peers, also support our middleware efficiently. In this
paper, we propose and evaluate an application of those
P2P concepts to virtual resource transfer and paral-
lel computation with aggregated resources. However,
such a P2P library imposes a certain amount of over-
head on the middleware in terms of communication per-
formance. Measured communication performance and
throughput of an application program shows the feasibil-
ity of the application of P2P concepts. The middleware
achieves 100×106 bps communication performance and
over a 20 fold increase in speed with 32 computers, even
though the granularity of workunits is as fine as less
than a second.

1 Introduction

Recently, activities have emerged that allow us to
use computational resources greater than we keep and
maintain ourselves. In these circumstances, we can use
others’ resources and pay-per-use for the supplied ser-
vices. Application Service Providers (ASP) offers such
computational services and Utility Computing should
enable transfer and trade of those services.

In Grid research and experiments, large-scale scarce
resources, such as high-end supercomputers, data stor-
age, observation sensors and experimental devices, have
been transferred virtually, and shared mutually and se-
curely across multiple organizations.

Internet-wide distributed computing projects [1, 2]
are also resource transferring activities, but specialized

for utilization of the computing power of individual
PCs. In those projects, participants can only donate
their resources. A participants can be only a “resource
provider” and the project owner is the only “resource
user.” The two are asymmetric in capability. Such
asymmetry is contrary to the the original idea of P2P,
in which peers ought to have equal capability. Equality
in resource transfer means that everyone not only pro-
vides his/her resources to others but also uses others’
resources.

This paper presents middleware named P3 (Personal
Power Plant) which we designed and developed. It en-
ables mutual and equal transfer of computing power
between individuals as called for in the original idea
of P2P. Any user of P3 can use any others’ resources
by submitting a computational job. It also supports
traditional large-scale distributed computation utiliz-
ing heterogeneous computers.

On the Internet of today, it is the normal situa-
tion that communication targets and directions are
restricted. Firewalls and NA(P)T impose such con-
straints on most computers. However, it is highly de-
sirable that any computer can initiate communication
to other computers to achieve mutual transfer of re-
sources. These constraints also restrict communication
patterns and programming models in parallel process-
ing to the master-worker model, and the like.

We made use of a general-purpose P2P communica-
tion library which provides a network overlay to get
rid of the constraints. On the overlay any computer
can communicate directly with other computers even
over an underlying restricted network with firewalls.
Most P2P software needs that sort of overlay and there
have been development efforts, including a relay-based
approach, and a hole-punching approach. By re-using
these results, our middleware can benefit from improve-
ment of the existing efforts.

Such a P2P library provides other benefits, such as
ad-hoc self-organization of computers, discovery, and
grouping of computers. These functions can efficiently
support P2P distributed computation middleware, in-
cluding P3. In this paper, we propose an application of

(C) 2005 IEEE

shudo
テキストボックス
Proc. Cluster Computing and Grid 2005 (CCGrid 2005, Fifth Int'l Workshop on Global and Peer-to-Peer Computing), May. 2005.



these functions to this kind of middleware.
A P2P library undoubtedly provides us a rich set

of features. But it is also certain that such a library
introduces performance overhead. We confirmed the
feasibility of a P2P library, JXTA, as a base for dis-
tributed computation by measuring basic communica-
tion performance and application throughput. These
experiments also showed the current scalability of P3
in number of processing computers, and the workunit
processing throughput of a master in a master-worker-
style job.

The rest of the paper is organized as follows. Sec-
tion 2 presents the usability of a network overlay for
the middleware, and a P2P library supporting network
overlay. In section 3, we propose an application of P2P-
specific functions for the middleware P3. Section 4 and
section 5 describe the design of the middleware, which
reflects the proposed application. Section 6 shows the
results of performance measurement, and the feasibility
of the application method for distributed computation.
In Section 7, we compare other middleware to P3.

2 A general-purpose P2P library

supporting overlay

It is highly desirable to have a network overlay for P3 on
which all computers can communicate equally and bidi-
rectionally each others because the goals of P3 include
mutual and equal transfer of computational resources.
We made use of a general-purpose P2P library, JXTA
[3], providing a network overlay on which any com-
puter can initiate communication to other computers
even though those computers are behind firewalls and
NA(P)T. Such bidirectional and nonrestrictive commu-
nication also enables message-passing-style parallel pro-
cessing, even though only a limited class of parallel pro-
cessing, like master-worker, can usually be performed
with firewalls.

On a network overlay provided by JXTA, a computer
is called peer and it is distinguished from others by
its peer ID. A communication target is specified us-
ing its peer ID. A peer can create and join multiple
peer groups, in which a peer discover other peers, peer
groups and communication pipes.

These functions provided by JXTA are primitives
common to many kinds of P2P applications, such as file
sharing, groupware, and instant messenger service. It
requires a great deal of labor to accomplish distributed
computation using the JXTA API directly. We devel-
oped middleware to facilitate management and devel-
opment of parallel applications.

Figure 1: Job selection using the Host’s graphical shell.

3 Application of P2P functions

to P3

Besides network overlay, P2P-specific functions pro-
vided by JXTA can be naturally applied to, and ef-
ficiently support, distributed computation middleware,
in addition to the usual P2P applications such as file
sharing software.

Peer group: Parallel processing naturally involves
collective communication to control multiple computers
and broadcast a message to all computers. P3 creates
a JXTA-supported peer group called a ‘job group’ for
each job that is a submitted parallel application.

In a job group, in addition to collective communica-
tion by parallel applications, distribution of the parallel
applications and data files and job execution control are
performed. JXTA utilizes IP multicast and also relays
a message across networks to achieve this broadcast.

Discovery: JXTA supports server-less decentralized
discovery of resources, including peer, peer groups,
communication pipes, and so on. It enables ad-hoc self-
organization of computers.

In P3, a resource user creates a job group for his/her
job and publishes an advertisement for the group. Re-
source providers discover the job group, determine
whether they want to contribute to the job, and join
the group if they do. Every computer is also discov-
ered in the same way as a job.

4 Job Management Subsystem

P3 consists of a job management subsystem, a job mon-
itor, and parallel programming libraries. This section
describes the job management subsystem, and the next
section depicts the libraries. The web-based job moni-
tor shows the progress of a job and computers partici-
pating to the job group.

A P3 user manages a job using the following software.

• Host: The Host is a daemon program which a re-
source provider runs on his/her computer. It dis-



Figure 2: Job submission using the Controller’s graph-
ical shell.

Job Peer Group

Host

Host

Host

Host

Host

Controller

HostController

Controller

Job Peer Group

Base Peer Group

Job Peer Group

Net Peer Group
(always existing JXTA’s base group)

Figure 3: Organization of job management software
and related peer groups.

covers a job group, receives a parallel application
representing the job, and hosts the application.

• Controller: The Controller is a tool using which a
resource user submits and controls jobs to a com-
puter pool running Hosts (Figure 2).

The Host first verifies the digital signature of a dis-
covered job. Secondly, if the Host is running in non-
GUI mode, it decides whether to accept the job or not
autonomically according to a policy supplied by the
user. A policy has declarations representing acceptable
jobs, for example, by the name of a job or a job sub-
mitter. The user running the Host can also make the
decision by himself/herself on the GUI (Figure 1).

Figure 3 shows peer groups which Controllers and
Hosts construct. The base peer group is the base group
which all Controllers and Hosts create and join just
after it is invoked. A user uses his/her Controller to use
others’ computing power by submitting a job, or runs
a Host to contribute compute power to others. Figures
4 and 5 illustrate job submission using the Controller,
and job participation by a Host.

A P3 application is written in Java language, and
then compiled and packed into a JAR (Java Archive)
file. A resource user submits those JAR files and data
files, using a Controller. A parallel application can use

Base Peer Group

Controller

Job Peer Group

Application

Code

Application

Code
Controller

(1) Create a Job Peer Group

(2) Join the Job Peer Group

(3) Share application code in the group

with JXTA CMS service

Figure 4: Controller’s job submission process.

Base Peer Group

HostHost

Job Peer Group

Application

Code

Application

Code

(1) Discover Job Peer Groups

(2) Decide to join a discovered job

(4) Discover Application code

HostHost

(3) Join the Job Peer Group

(5) Obtain the code from a Controller

Figure 5: Host’s job participation process.

parallel processing libraries (section 5) for inter-Host
communication. A Host can also invoke a natively com-
piled application. But it will have better support later
when P3 adopts a sandbox implementation, in which
native applications run securely and a resource provider
feels easy about accepting native applications.

5 Parallel Programming Library

P3 provides two parallel programming libraries for ap-
plication developers. One of the common goals of such
libraries is easy development of parallel applications.
Developers should not have to deal with the details of
communication and the underlying distributed environ-
ment. We designed the libraries along these certain
rules. For example, one of the libraries, the master-
worker library, can detect false computation results and
an application on it does not have to do anything for
the detection.

Figure 6 shows the structure of the parallel program-
ming libraries of P3.

5.1 Object Passing Library

We provided an object passing library to support multi-
ple parallel programming models with less development
work. It is implemented directly on JXTA, hides the



Figure 6: Libraries supporting parallel programming.

interface ObjectPassing {

void send(PeerID receiver, Serializable obj);

void broadcast(Serializable obj);

Envelope recv(PeerID sender);

Envelope recv(PeerID sender, long timeout);

// receive a message from anyone

Envelope recv();

Envelope recv(long timeout);

// check if a message is available

boolean available();

boolean available(PeerID sender);

// register and unregister a message listener

void addObjectPassingListener(

ObjectPassingListener listener);

void removeObjectPassingListener(

ObjectPassingListener listener);

}

Figure 7: API of object passing library.

complexity of the JXTA API, and presents a simple set
of APIs to libraries relying on it. The master-worker
library and the message passing library could be easily
implemented because they rely on the object passing
library.

Figure 7 shows the API of the object passing li-
brary, by which an application can unicast or broadcast
Java objects, and receive them synchronously or asyn-
chronously. A communication target is specified using
its peer ID. The raw JXTA API is sufficiently compli-
cated to support all needs of P2P software. The object
passing API wraps the JXTA API in a simple set of
APIs to facilitate construction of various programming
libraries.

5.2 Message Passing Library

The message passing library also sends and receives
objects the same as the object passing library, but
the communication target is distinguished using a non-
negative integer rank, not a peer ID. This is the same
as the method used in MPI [4]. This library main-
tains correspondence between a rank and a peer ID

class AMaster implements Master {
Serializable getWorkerInitData() {

return <data to initialize a worker>;

}

start() {
while (...) {
WorkUnit wu = <a workunit>;

// submit a workunit

submitWorkUnit(wu);

}
}

}
Figure 8: Master side of an application program com-
plying with the master-worker API.

class AWorker implements Worker {
void init(Serializable initData) {

// initialize this worker instance

}

WorkResult process(WorkUnit wu) {
// process a workunit and

// return the result

}
}
Figure 9: Worker side of an application program com-
plying with the master-worker API.

and translate one to the other.
The rank of a Host is assigned by a Controller when

a job starts running, and a correspondence table is an-
nounced to all Hosts in the job group. Thus consis-
tency of the message delivery target is assured because
all Hosts share the table.

5.3 Master-Worker Library

The master-worker library supports master-worker-
style parallel processing. An application developer
writes programs for the master-side program, the
worker-side program, and the workunit, respectively.
A workunit represents a certain amount of work which
collectively composes a job. It is delivered from a mas-
ter to a worker and processed by the worker. Figures
8 and 9 show instances of a master-side program and a
worker-side program.

Workunit delivery and scheduling are the charge of
the master-worker library, not an application. A worker
can join or leave a job at any time, even though the
job has started running or the worker is processing a
workunit. This feature, ad-hoc joining and leaving, is
implemented entirely by the library, and an application
developer does not need to take care of it. If a worker
leaves a job group, a workunit delivered to the worker
but not completed is delivered to another worker, and
the whole of a job is accomplished after all.



We have to assume that there are malicious partic-
ipants in Internet-wide distributed computing. They
may receive workunits and not process them. It is also
possible for them to return false calculation results to
obstruct the job.

The former lazy worker problem is addressed by the
timeout-based redistribution of workunits. The latter
false results problem, is also dealt with by the master-
worker library automatically. The library detects a
false result by voting [5]. In P3, if a false result is
detected, the workunit is distributed again. This de-
tection process is performed completely by the library
and an application does not deal with false results.

A master distributes a single workunit m times to
workers and compares n returned calculation results.
The master accepts a result as the correct one if n re-
sults agree. An application developer can provide code
performing a custom matching process in which n re-
sults are examined, while the default code in P3 per-
forms exact matching. Such a custom matching process
allows automatic verification to work for results like
floating-point values, which have some play in them
and cannot be compared exactly.

A Host, not Controller, takes the role of master. In
P3, a Controller does only job management work. A
Host taking the master’s role is chosen by the Controller
submitting the job. It is possible that a Host stands as
a candidate for master. A user can specify it when
invoking a Host. If a Controller finds multiple standing
Hosts, it chooses one standing Host randomly. If there
is no standing Host, a Host is chosen randomly out of all
Hosts in the job group. The Controller announces the
chosen Host as the master and all Hosts recognize it.
The current master selection process is naive, but it can
be improved on future work involving the capabilities of
Hosts, like computing power and network bandwidth.

Consequently, one of the Hosts participating in a
master-worker-style job performs the work of a master.

5.4 Emulator

It is time-consuming work to develop and debug a par-
allel program, compared to a sequential program. The
reasons for this include difficulty in understanding par-
allel activities in the program in addition to longer
turnaround time to set up and run the program.

P3 includes an emulator of the object passing li-
brary. The emulator hosts and runs a parallel appli-
cation on a single computer (Figure 6). The emula-
tor supports both master-worker-style applications and
message passing applications because both libraries rely
on and use only the object passing API for communi-
cation. This generality of the emulator is derived from

Table 1: Communication latency.
TCP (C language) 0.062
TCP (Java language) 0.064
Message passing library 4.5

(msec)

the generality of the object passing API and the layered
design of P3 libraries.

6 Performance Evaluation

This middleware benefits from a rich set of P2P-specific
functions provided by a P2P library as described in sec-
tion 2 and 3. It is naturally expected that such rich
functions introduce a certain amount of overhead into
communication performance and application through-
put. We measured both to evaluate the feasibility of
the P2P library, JXTA.

All experiments were carried out on a PC clus-
ter which consists of 32 computers connected over
1000BASE-T Gigabit Ethernet. Each computer has
dual 2.4 GHz Intel Xeon processors and runs Linux
2.4.19. The Java runtime is HotSpot Server VM of
Java 2 SDK 1.4.2. The JXTA implementation is version
2.1 of the J2SE reference implementation. We ensured
that JXTA uses TCP as the communication protocol
by prohibiting use of HTTP.

Bandwidth on the Gigabit Ethernet LAN is much
broader, and latency on it is smaller than that of the
current Internet. But such a rich environment can bring
performance, limitations, and overhead of the middle-
ware itself, to light.

6.1 Communication Latency and
Throughput

We measured the communication latency and through-
put of the message passing library of P3 and compared
the results with the latency and throughput of raw
TCP. The comparisons illustrate the overhead intro-
duced by JXTA and the message passing library.

Table 1 shows one-way latency which was measured
by 1000 round trips of a 1 byte message. The JXTA-
based message passing library took about 4 or 5 msec
processing time on computers involved in the commu-
nication. The latency was introduced mainly by JXTA
and the parallel programming libraries on it, not from
the network itself, because the underlying TCP com-
munication costs only 0.06 msec.

Throughput shown in Figure 10 is measured by 100
round trips of a variously sized message between 2 com-
puters. In this paper, kilo (K) means 1024, not 1000,
mega (M) represents 10242 and so on. The highest



Figure 10: Throughput of the message passing library
on JXTA.

Figure 11: TCP throughput.

throughput near 100 Mbps was achieved with 128 KB
sized messages. The same throughput can be achieved
if a message is larger than 128 KB because such a mes-
sage can be divided into smaller chunks.

Raw TCP throughput reaches about 90% of the phys-
ical bandwidth of Gigabit Ethernet as shown in Figure
11. Compared to this, the JXTA-based message pass-
ing library could achieve only about 9% of the physi-
cal bandwidth. It is natural to conclude that such low
throughput is due to JXTA because the library is a thin
layer which just packs a Java object into a JXTA mes-
sage and send it. A report [6] shows that JXTA 2.2.1
achieves 136.78 MB/s on a high-speed network Myrinet.
This result indicates that JXTA can potentially fulfill
the bandwidth of Gigabit Ethernet with appropriate
settings of underlying network layers. Anyway, Figure
10 demonstrates that the JXTA-based message passing
library could fulfill the bandwidth of today’s Internet
connection to homes and small offices, which is cur-
rently up to about 100× 106 Mbps.

6.2 Throughput of Workunit Passing

In master-worker-style parallel processing, a master is
prone to be the bottleneck of the whole parallel com-

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32

Number of workers

（
m
s
e
c
）

22.1

13.4

27.1

13.8

15.4

20.9 20.2

Figure 12: Workunit handling time.

putation as the number of workers increases. It is im-
portant to prevent this for efficient parallel processing.
The work of a master consists of preparation of worku-
nits, distribution of them, collection of processed re-
sults for each workunit, and post-processing of the re-
sults. Two processes, workunit distribution and result
collection, are performed by the master-worker library,
not an application. Performance of the two processes
can be limiting factors of the entire parallel processing
effort. They should be as efficient as possible.

We measured the throughput represented by the
number of workunits (results) a master could distribute
and collect in a unit of time. The time for a pair of dis-
tributing and collecting operations was measured by
distributing 200 workunits and then collecting calcu-
lated results for them. Workers do not perform any
work on a workunit and just return a result.

Figure 12 shows the results. A pair consisting of a
distribution and a collection took 28 msec in the worst
case and 13 msec in the best case. In other words, 35
workunits were processed a second in the worst case and
76 workunits a second in the best case. This number
would be improved by increasing workers if the latency
was caused by the network, but unfortunately this is
not the case because the cause is message processing
time, not the network (section 6.1).

In an Internet-wide project operated by United De-
vices, the throughput has been adjusted to 120 worku-
nits a second by adjustment of the size of the workunit
[7]. The project involves tens of thousands of comput-
ers. It is natural to expect that the peak performance
of that system is several times as high as the average
throughput of 120 workunits per second. It was found
that JXTA and the master-worker library based on it
have to be improved several times if it hosts tens of
thousands computers with a single master. A P3 sys-
tem with many computers have respective masters for
each job, though.



Figure 13: Parallel efficiency in an RC5 key search ac-
cording to the granularity of workunits.

Table 2: Calculation time per workunit.
Number of keys
in a workunit Processing time (sec)
0x8000 1.4
0x4000 0.69
0x2000 0.36

6.3 Tolerance to Fine Grain Workunits

In a master-worker-style application, it becomes easy to
gain performance improvement as the granularity gets
coarse because communication overhead is then hidden
by calculation time. We measured the speedup accord-
ing the number of workers. The purpose of this experi-
ment is estimation of tolerance to fine-grain workunits.

The application used in this experiment is a brute-
force key search on the RC5 cryptosystem, which is
the same computation as that of Project RC5 of dis-
tributed.net [8]. It was implemented on P3’s master-
worker library. The granularity of a workunit is ad-
justed using the number of key candidates in a worku-
nit, which is set at 0x8000, 0x4000 and 0x2000 (hex-
adecimal notation). The number of workunits is 200
and the number of workers is varied from 1 to 32. The
performance is represented by the number of workunits
processed in a unit of time.

Figure 13 shows the speedup ratios according to the
granularity of workunits. The ideal speedup ratio is
not the same as the number of workers because the
number of workunits is not a multiple of the number
of workers. Table 2 shows the calculation time of a
workunit. Load imbalance is the cause of the limited
speedup ratios with 0x2000-sized workunits. In the case
of 0x2000 and 24 workers, the total processing time was
only 6.13 sec, and it takes about 1 sec for a worker
to start running from the time a master instructs the
workers to start. This varying delay caused the load

imbalance and limited speedup.
Speedup ratios shown in Figure 13 indicate that the

JXTA-based master-worker library can achieve about
a speedup of 20 fold with 32 workers even though a
workunit is adequately fine grained as it completes in
a second. Note that such fine and severe granularity is
not realistic in an Internet-wide project. The granular-
ity is usually adjusted to several or dozens of minutes.

7 Related Work

P3 has the following features because its goal is mutual
and equal transfer of computational resources.

• Anyone can use others’ resources by submitting a
job.

• A resource (PC) provider can choose jobs to which
his/her computer contributes.

P3 is compared with other distributed computing
middleware in this two respects in Table 3. At least,
job submission requires an application to be indepen-
dent of the middleware. Table 3 shows application inde-
pendence of middleware in place of the job submission
feature. Job selection, the latter feature, means that
a calculating software (i.e. the Host of P3) can accept
multiple jobs simultaneously and can also reject a job.

JNGI [9] is a distributed computing framework. It is
also based on JXTA as P3 is. JNGI manages a large
number of peers efficiently by dividing peers into peer
groups which have a limited number of peers each, while
P3 utilizes a peer group to wrap activities of an appli-
cation into it. A JNGI paper [9] could not evaluate
JXTA’s feasibility for distributed computation because
the paper does not show the standard of speedup ra-
tios obtained even though the experiment is performed
with heterogeneous computers. And the experiment
did not impose much of a load on JXTA. 150 workers
were involved in the experiment but the granularity of
a workunit is as coarse as 130 sec. The master deals
with only about one (150/130) workunit a second in
that situation.

BOINC [10] is middleware that helps creation
and operation of public-resource computing projects.
BOINC is application-independent and provides a false
results detecting mechanism as P3 does. A computing
client of BOINC can accept multiple projects (jobs) si-
multaneously as P3 can, though a project originator
has to prepare a computer to host the project.

A number of Internet-wide distributed computing
middleware [11, 12, 13, 14] have been developed, and
they each have respective characteristics, like product-
level quality and special programming models. P3 can



Table 3: Comparison between P3 and other Internet-wide distributed computing software.
Application- Job selection Communi- Programming Parallel Detection
independent by resource cation Languages programming of false
middleware provider protocol model results

P3 yes yes JXTA Java Master-worker, yes
Message passing

JNGI [9] yes no JXTA Java Master-worker no
BOINC [10] yes yes HTTP and C, C++, etc. File yes

original
XtremWeb [11] yes no choosable C, C++, etc. File

(RMI, etc.)
SETI@home [1] no no HTTP C, C++, etc. File yes

be differentiated by the job selection feature, automatic
false result detection, and support of message passing
programming.

8 Conclusion

We have presented middleware for mutual and equal
transfer of computing power between individuals. An-
other and traditional goal of the middleware is large-
scale distributed computing. We applied P2P func-
tions, such as discovery and peer groups, provided by
JXTA, a general-purpose P2P library, to the middle-
ware. Utilizing these functions, computers can con-
struct a group ad-hoc, and the group can process a
submitted parallel job.

Performance measurement showed that P3 can fill
100 Mbps bandwidth. Workunit handling time came
up to about 30 msec in the worst case and it should be
improved to host tens of thousands of computers in a
job. A master-worker-style job could achieve a 20 fold
speedup with 32 workers even with fine grain workunits.

Future work includes confirmation and improvement
of quality and feasibility for real world use, while real
applications, including protein folding [15], have al-
ready been implemented. It would also be interest-
ing to integrate P3 with Grid middleware which har-
nesses multiple PC clusters. In that case, P3 would
take charge of cluster management software like PBS
or LSF.

Acknowledgments

This work was partly supported by the Information-
technology Promotion Agency (IPA) “Next Generation
Software Development” project.

References
[1] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and

M. Lebofsky, “SETI@home: Massively distributed comput-
ing for SETI,” in Computing in Science and Engineering,
vol. 3, pp. 78–83, January/February 2001.

[2] distributed.net, “distributed.net: Node zero.”
http://www.distributed.net/.

[3] Project JXTA, “jxta.org.”
http://www.jxta.org/.

[4] Message Passing Interface Forum, MPI-2: Extensions to the
Message-Passing Interface, July 1997.

[5] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for vol-
unteer computing systems,” Future Generation Computer
Systems (FGCS), vol. 18, pp. 561–572, Mar. 2002.

[6] M. Jan and D. A. Noblet, “Performance evaluation of JXTA
communication layers,” Tech. Rep. RR-5350, INRIA, Oct.
2004. http://www.inria.fr/rrrt/rr-5350.html.

[7] K. Ueno, “Personal communication,” June 2003.

[8] distributed.net, “Project RC5.”
http://www.distributed.net/rc5/.

[9] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov,
“Framework for peer-to-peer distributed computing in a het-
erogeneous, decentralized environment,” in Proc. of Third
International Workshop on Grid Computing (GRID 2002),
pp. 1–12, Nov. 2002.

[10] D. P. Anderson, “BOINC: A system for public-resource com-
puting and storage,” in Proc. Fifth International Workshop
of Grid Computing (GRID 2004), pp. 4–10, Nov. 2004.

[11] G. Fedak, C. Germain, V. Néri, and F. Cappello,
“XtremWeb: A generic global computing system,” in CC-
Grid2001 Special Session Global Computing on Personal
Devices, May 2001.

[12] GreenTea Technologies, Inc., “GreenTea Platform Whitepa-
per,” 2002.

[13] M. O. Neary, A. Phipps, S. Richman, and P. Cappello,
“Javelin 2.0: Java-based parallel computing on the inter-
net,” in Lecture Notes in Computer Science (LNCS) for
6th Int’l Euro-Par Conference (Euro-Par 2000), vol. 1900,
pp. 1231–1238, Springer Verlag, Aug. 2000.

[14] L. F. G. Sarmenta and S. Hirano, “Bayanihan: Building
and studying web-based volunteer computing systems us-
ing Java,” Future Generation Computer Systems (FGCS),
vol. 15, pp. 675–686, Oct. 1999.

[15] I. Ono, H. Fujiki, M. Ootsuka, N. Nakashima, N. Ono,
and S. Tate, “Global optimization of protein 3-dimensional
structures in NMR by a genetic algorithm,” in Proc. of 2002
Congress on Evolutionary Computation, pp. 303–308, 2002.




