
Asynchronous Migration of Execution Context

in Java Virtual Machines

Kazuyuki Shudo∗, Yoichi Muraoka

School of Science and Engineering, Waseda University,
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan

Abstract

The migration of the execution context has been applied to remote execution and
mobile agents, and asynchronous migration can be applied to even more applications,
such as load balancing. We have therefore designed a system for the migration of Java
threads, one that allows asynchronous and heterogeneous migration of the execution
context of the running code. This paper describes an overview of the system, the
problems we have faced in designing its facilities, and the results of preliminary
evaluations of it performance.

Key words: Thread migration; Execution context; Asynchronous migration;
Runtime system; Java Virtual Machine

1 Introduction

The migration of execution context,
known as process and thread mi-
gration, has long been applied to
load balancing and remote execu-
tion[4][8][3], and has recently been
applied to mobile agents[18][14][13].
One of the challenges remaining in
this area is to design facilities that
support asynchronous and hetero-
geneous migration, as well as the
execution of native code.

∗Correspoinding author. E-mail:
shudoh@muraoka.info.waseda.ac.jp;
tel.:+81 3 3209 5198; fax:+81 3 3209
5198.

We are designing a migration sys-
tem for Java threads, and it will
provide all three of these functions.
The system, called MOBA, supports
the asynchronous migration of Java
threads in heterogeneous various
platforms but the facility for exe-
cution of native code has not been
implemented yet. The system al-
lows the migration of an execution
context to be ordered using simple
programming and user interfaces.
Programmers can instruct a thread
to migrate with one statement:
“goTo(destination)”. A migrant in
the system is a thread with its ex-
ecution context. An execution con-
text consists of the states of meth-
ods being executed, and it resides in

Preprint submitted to Elsevier Preprint 22 January 2000

stack frames that contain the pro-
gram counter, operands, and local
variables. The context can be saved
and moved to other Java virtual ma-
chine(JVM)s without cooperation of
the running code, and its execution
can be resumed.

“Asynchronous” means that the mi-
gration can be carried out without
the awareness of the running code.
Asynchronous migration allows enti-
ties outside of the migrating thread
to give the order to migrate. Users
and threads other than the migrant
can issue orders. Accordingly, an
appropriate program, such as a job
scheduler, can attempt to balance
loads of JVMs with migration.

Heterogeneity of machines, such as
differences in processors and op-
erating systems, surely complicate
the migration approach. Our system
make heterogeneous migration[17]
possible by handling the execution
context in the JVM rather than in
a particular processor or in an oper-
ating system. Threads in our system
can thus migrate between JVMs on
different platforms.

In the rest of this paper, we describe
an overview of the designed system
and discuss design and implement
issues of thread migration facilities.
In the section 2, we try to compare
MOBA with some existent systems
and methods. In the section 5, we
show the results of preliminary per-
formance evaluations.

2 Related Work

The properties of systems supporting
the migration of execution context
and mobile agents are listed in Table
1. The entry in the context column
shows whether or not the system
supports migration of execution con-
text, that in the execution column
shows how the code is executed, that
in the heterogeneity column shows
whether or not the system allows mi-
gration between machines differing
in processor and underlying OS, and
that in the asynchronousness column
shows whether or not the system
allows asynchronous migration.

Sumatra[12] and TeleScript[18] are
the systems most similar to MOBA.
They differ in programming lan-
guage — TeleScript has its own lan-
guage, whereas MOBA and Sumatra
adopt Java — but their mechanisms
are similar. The code is executed
by an interpreter, and the execution
context can migrate. Only MOBA,
however, provides asynchronous mi-
gration. Migration can be carried
out without awareness of the run-
ning code. In other words, orders
to migrate can be issued by entities
other than the running code. This
means that the timing of migration
can be determined at runtime. Al-
though the mechanism of TeleScript
doesn’t prevent asynchronous mi-
gration, TeleScript does not offer
programming or user interfaces for
it. And Sumatra allows only explicit
migration using a go() method.

JavaGO[14][13] and Fünfrocken’s
method[5] also can save and move the

System Language Context Execution
Hetero-
geneity

Asyncro-
nousness

MOBA Java yes interpreter yes yes

Sumatra Java yes interpreter yes no

JavaGO Java yes JIT or interpreter yes no

Voyager,Aglets Java no JIT or interpreter yes no

TeleScript TeleScript yes interpreter yes no†

Emerald Emerald yes native code no yes

Arachne C, C++ yes native code yes no

† The mechanism does not prevent asynchronous migration. But the way to issue
an order from the outside of the running code is not provided.

Table 1
Properties of various migration systems.

execution context of a Java program
and restore it on another machine.
Their approach is based on pre-
process or source code translation.
Arachne[3], which is a thread system
for the C and C++ languages, is also
based on the sort of method. Their
method applied to Java has the ad-
vantage of being able to work with
fast existing JIT compilers. Dedi-
cated JVMs, either that are extended
or built from scratch, can not bene-
fit from existing JIT compilers. One
of the problems of this translation
approach is that its area of applica-
tion is more limited than that of a
runtime-system approach. Because
the translation approach requires the
timing of migration to be described
in migratory codes, it cannot be ap-
plied to some of the applications that
need asynchronous migration, such
as load balancing.

3 Overview of the System and
the Scheme

MOBA is implemented as a plug-in
to the JVM, that is implemented
by Sun Microsystems and dealt out
distributed as Java Development
Kit(JDK) and Java Runtime En-
vironment(JRE). The most part of
MOBA is written in Java. Although
some of its code is in C language,
the system supports any UNIX plat-
form where Sun’s JVM can run.
MOBA is a plug-in, not a JVM built
from scratch, so a program utiliz-
ing MOBA functions can also utilize
plenty of functions provided by the
JDK.

3.1 Programming and User Inter-
face

The programming interface provided
by MOBA is so simple that only a
few changes to the original code are
needed to make the code migratory.

To make the thread movable, we use
the MobaThread class instead of the
normal Thread class to instantiate
the thread. To migrate to another
machine, call the following method.

MobaThread.goTo(destination)

Unlike programmers working with
existent mobile agent systems for
Java[9][11][6], programmers working
with MOBA have to pay little atten-
tion to the particular programming
interface.

Migration can be ordered not only
by the migrant but also entities out-
side of the migrant, such as other
threads and users. In this case, no
statement to migrate is required in
the migrant’s code. Other threads in
the same JVM, where the migrant
stays, call the following method to
move the thread.

<target thread>.

moveTo(destination)

Furthermore, users can issue the or-
der to migrate by using some user
interfaces, either character-based or
graphical(Fig. 1).

3.2 Organization of the Facilities

The migration facilities MOBA con-
sist of some libraries, introspection,
object marshaling, thread external-
ization, and thread migration. Their
relation and dependency are shown
in Fig. 2. The introspection library
provides the same function as the re-
flection library which is part of the
standard library of Java. Similarly,

Java Virtual Machine

Object
Marshaling

Thread
Externalization

Thread
Migration

Access
 with
 native methods
 (in C lang.)

User Application

is MOBA.

Introspection

Fig. 2. Organization of thread migra-
tion facilities.

1. Attributes
2. Reachable objects
 from the thread

3. Stack frames

Thread

Class and method name
PC to return (in offset)
Operand stack top
Last-executed PC
Local variables
Stack

order

name, priority, ...

Fig. 3. Procedure to externalize a
thread.

object marshaling provides the func-
tion of serialization. Thread external-
ization translates a state of the run-
ning thread to a byte stream, and it is
used by the thread migration library
for moving threads between JVMs.
Thread externalization can be used
not only for migration, but also for
persistence and fault tolerance. We,
or an appropriate daemon program,
can save states of running threads to
a disk or a database in order to pro-
vide for an unforeseen fault of an un-
derlying OS or machine.

The procedure to translate a thread
to a byte stream is represented in
Fig. 3. First of all, some attributes
of the thread (name, priority and so
on) are translated. Then, after all

Fig. 1. Graphical user interface to visualize mobile threads and order to migrate.

the objects that are reachable from
the thread object are marshaled, ex-
ecution context is treated. A context
consists of contents of stack frames
generated by a chain of method in-
vocations. The externalizer follows
the chain from older frame to newer
one and serializes the contents of the
frame. A frame is located on the stack
in a JVM and contains the state of
a called method, The state consists
of a program counter, operands to
the method, local variables, elements
on the stack. They are serialized in
machine-independent form.

4 Design Issues of Thread Mi-
gration in JVMs

This section addresses some issues
of implementing migration system
of execution context in JVM. Asyn-
chronous migration is a type of mi-
gration ordered by the thread other

than the migratory thread’s self. It
needs support by JVM and JIT. JIT
compiler have to provide a machine-
independent form of execution con-
text, or it cannot work with a run-
time system such as MOBA. Com-
mon JIT compilers do not provide.
MOBA copies all the objects reach-
able from the migratory thread to
the migration target, but in some
cases, selection of of objects is de-
sirable. If the selection is possible,
MOBA can leave objects tied to the
local resources such as file and socket
descriptors. Current MOBA imple-
mentation disables those objects at
migration.

4.1 Asynchronous Migration

“Asynchronous migration” is mi-
gration without awareness by the
migrant. The migration in MOBA
does not need any cooperation of the
migrant program. In contrast to it,

synchronous migration is invoked by
the migrant program itself. This is
suitable for some applications (e.g.,
describing mobile agents) but not
for other applications. Dynamic load
balancing and saving running states
for fault tolerance are two applica-
tions that need asynchronous migra-
tion.

Migration of execution context needs
that the migratory thread is sus-
pended at a migration safe point. It
is defined as a point in the execution
of JVM, at which point the JVM
is in a consistent state. A JVM can
be inconsistent in the middle of the
execution of a bytecode instruction,
in other words, elements of the ex-
ecution context (such as a program
counter, a stack pointer and so on)
are inconsistent.

MOBA allows asynchronous migra-
tion, but it requires nonpreemp-
tive scheduling of Java threads. If
scheduling is preemptive, generally
threads can be suspended at a not-
safe point. Nonpreemptive schedul-
ing, on the other hand ensures that
the suspended thread is at a safe
point. In nonpreemptive scheduling,
the thread suspends its own exe-
cution by calling methods to wake-
up the scheduler. For example, the
Thread.yield() method, and some
other methods that call system calls
of the OS, kick the scheduler.

Sun’s JVM can utilize two kinds
of libraries as an underlying thread
library: OS native threads (e.g.,
Solaris native threads) and green
threads. Scheduling in green threads
is nonpreemptive, so it always allows

asynchronous migration. Although
with preemptive scheduler, MOBA
can carry out cooperative migration
(e.g., goTo(destination)).

There are some techniques to stop
threads at one of migration safe
points even with preemptive schedul-
ing. Polling and code patching are
widely known. Patching is similar
to debuggers’ use of break points to
suspend execution at a given loca-
tion. ResearchVM, which is a JVM
developed in Sun Microsystems Lab-
oratories and is formerly called Ex-
actVM or EVM, uses patching to
suspend threads at GC points[2].
Stack frame maps which shows the
types of stack contents is provided
for each GC point, so the JVM needs
to stop threads at the points. If we
make a JVM and a JIT compiler by
ourselves, we can apply these tech-
niques. Or ResearchVM is possibly
suitable for the base to implement
thread migration. Some features of
the JVM can support thread migra-
tion. GC points enables thread sus-
pension at safe points because GC
points is also migration safe points.
Stack frame maps can eliminate type
inference of values in the stack (sec-
tion 4.5).

4.2 Runtime Compilation

Most JVMs have a runtime compiler
called a Just-in-time compiler (JIT).
It translates bytecode to processor
native code at runtime. A runtime
system such as MOBA that supports
the capturing of execution context,
however, is incompatible with exist-

ing JIT compilers. Because the ap-
proach of MOBA and Sumatra[12]
provides a runtime system support-
ing execution-context capture, they
cannot work with existing JIT com-
pilers.

Heterogeneous migration needs a
machine-independent representation
of execution context, but most exist-
ing JIT compilers don’t preserve a
program counter on bytecode. Only
the counter on native code can be
obtained during execution of the na-
tive code generated by an existing
JIT compiler. But, Sun’s HotSpot
VM[16] may allow the execution
context on bytecode to be captured
during the execution of the gener-
ated native code. Its details is not
documented, but capturing the pro-
gram counter on bytecode seems to
be needed for its dynamic deopti-
mization. Common JIT compilers do
not allow it.

The approach based on source code
translation[14][5] may work with any
existing JIT compiler and thereby
benefit from the JIT. But as noted
earlier, this approach requires the
timing of migration to be determined
when writing codes, it cannot be ap-
plied to areas such as load balancing
and fault tolerance.

Although none of the JIT compilers
presently available can work with the
runtime system, but it should in prin-
ciple be possible to design a JIT com-
piler that supports the capture of ex-
ecution context.

we are now developing the sort of JIT
compiler: the native code sometimes

checks a flag during its execution,
and the flag indicates a request for
capturing the context. This polling
may have some cost in term of perfor-
mance, but we expect any decrease
in performance to be small.

4.3 Selection of Objects to be Trans-
ferred

All the objects reachable from the
thread object are marshaled and
replicated on the destination of the
migration. This may be a problem. In
the case that a object is transferred
to the other machine and transferred
to the original machine again, the
original object and the object trans-
ferred twice are different objects. The
semantic of the program may change
if multiple threads share the object
and part of them migrate. And some
transferred objects will not be used
on the destination. Transferring all
the objects is wasteful in respect of
migration cost.

Selective migration may be able to
solve these problem. But there are
some problems to implement it. We
must develop an algorithm to de-
termine which of the objects should
be transferred. And migration sys-
tem have to cooperate with a kind
of distributed object system which
enables remote reference and remote
operation. The migrated thread has
to access to remained objects with
the distributed object system. The
distributed object system have to be
touch with JVM closely. It must sup-
port interchange of a local reference
and a remote reference. And if it does

not allow some type of operations
such as array access, the migrated
thread which does them cannot work
properly.

There are no existent systems that
satisfy these requirements, so we have
developed a distributed object sys-
tem supported by the JIT compiler
shuJIT[15] and we are integrating it
with MOBA. The system implements
all requirements mentioned above be-
cause it is supported by the JIT and
able to cooperate with JVM closely.

4.4 Marshaling Objects Tied to the
Resources

MOBA does not offer a function han-
dling objects that reside in a remote
machine, and it thus cannot by itself
handle a reference to a remote ob-
ject. Objects reached from the migra-
tory thread are copied to the migra-
tion target. How to maintain objects
which have some relation to resources
specific to the machine is a common
problem in object migration systems.
File and socket descriptors are exam-
ples of the resources.

The general solution for the sys-
tem to support remote reference is
making the objects fixed to the ma-
chine[8][12]. Although integration
of MOBA with a distributed object
system (section 4.3) should make
the solution possible to adopt, cur-
rent MOBA cannot use that solu-
tion because so far it cannot handle
remote references. To prevent acci-
dents caused by an attempt to move
the resources, MOBA disables some

kinds of resources, such as a file de-
scriptor. Consequently, the file de-
scriptor becomes invalid (e.g., −1)
at migration.

Classes may be grouped into some
categories with regard to their de-
pendence on resources. Some classes
whose instances are tied to the re-
sources must be maintained, but
others do not have to be maintained.
When classes are newly written by
programmers, the programmers can
write specific marshaling methods
for them. But, if the classes reside
in the Java standard library, they
are not aware of the migration of
their instances. If the object migra-
tion system does not make objects
stationary, it has to treat the re-
sources tied to the classes. Current
MOBA maintains some classes such
as FileDescriptor.

4.5 Types of Values on the JVM
Stack

The runtime system that supports
the capture of execution context has
to know the types of values in the
stack of a JVM. Local variables and
operands of the called method stay
on the stack. The values may be
32-bit or 64-bit immediate values or
references to objects.

It is difficult to distinguish the types
referring only the value. A Sumatra
interpreter maintains a type stack
parallel to the value stack[1], and
distinguishes the type with it. Suma-
tra has its own interpreter built from
scratch, so it can use this method.

But MOBA is a plug-in to the ex-
isting Sun’s JVM, which does not
have a type stack like Sumatra. If the
class file has LocalVariableTable

attributes[10], the types of local vari-
ables can be obtained in the table.
But in general, in a Sun’s JVM there
is no information about the type of
values in the stack.

With a JVM like Sun’s, we have ei-
ther to infer the type from the value
else determine the type by data flow
analysis which trace the bytecode
of the method like a bytecode veri-
fier. Tracing bytecode to determine
types is computationally expensive,
so MOBA infers the type from the
value. It distinguishes a reference
from an immediate value by utiliz-
ing the fact that all references reside
in the specific heap space and are
aligned in 64-bit boundaries. When
a value is given, if it is in the mem-
ory area and aligned in the bound,
the value is regarded as a candidate
for a reference. Furthermore, MOBA
checks the structure of the candi-
date. The value is considered as an
immediate value if it does not have
the right structure as a reference. Ac-
cording to this method, a reference
can never be mistaken for an imme-
diate value, but it is possible that
an immediate value is infrequently
mistaken for a reference.

This inference and validation method
cannot be perfect. Although the pos-
sibility of misidentification is not
high, this is one of important prob-
lems which current implementation
has and should be solved. It can be
a solution to make a stack frame

maps[2], or MOBA will be able to

refer the maps if a JVM and a JIT
compiler provide them. The JVM
which MOBA runs on does not pro-
vide them, but ResearchVM does
(section 4.1).

5 Performance Evaluation

We evaluated the performance of
MOBA’s mobility function by us-
ing two machines connected via one
Ethernet repeater, in a 100-Mbit/sec
Ethernet. One of the machines had
an UltraSPARC–II 167-MHz proces-
sor, the other had an UltraSPARC–
II 296-MHz processor, and SunOS 5
ran on both machines. We used the
reference implementation of JDK
1.1.8 with MOBA and used the pro-
duction release of JDK 1.1.7 with
other systems, and we used inter-
preter with MOBA and Sun JIT
compiler with other systems since
MOBA can’t work with existing JIT
compilers.

5.1 Latency of Migration

We described a simple and light-
weight migrant with MOBA and with
Voyager ORB 3.0[11], and then made
them go and return. With MOBA
the following code is deployed in the
migratory thread’s self:

get the start time;
for (i = 0; i < repeat time; i++) {

go to the destination;
return to the original machine;

}
get the end time;

of roundtrips 1 10 20 50

MOBA 191.0 109.3 105.53 105.32

Voyager 292.5 57.05 44.00 37.08
Table 2
Latency of an one-way migration (msec).

In the case of Voyager, we provided
the following code outside the migra-
tory object. The code issues instruc-
tions to migrate using Voyager’s mo-
bility facilities.

create a migratory object;
get the start time;
for (i = 0; i < repeat time; i++) {

move the object
to the destination;

move the object
to the original machine;

}
get the end time;

Migration times obtained with the
systems are listed in Table 2. It is in-
teresting whether thread migration
can be comparable with the mobile
agent system like Voyager, which
does not support migration of exe-
cution context. Voyager shows lower
latency for multiple roundtrips. But
when a go and back is performed
once, MOBA is faster even though it
moves the execution context in addi-
tion to the data held by the migrant.
The initial use of Voyager’s mobility
seems to cost a lot. In such cases,
the cost of transferring execution
context will be acceptable.

5.2 Throughput

We also used MOBA for remote ex-
ecution, measured the data transfer

throughput, and compared it with
the throughput obtained using two
object request broker(ORB)s for
Java, RMI[19] and HORB[7]. With
ORBs we used a remote method in-
vocation with an argument and no
return value. The argument was a
large array of 64-bit floating point
value:

// preparation
double[] argument =

new double[array size];
get the remote reference

into the variable remote ref;
// measurement
get the start time;
remote ref.aMethod(argument);

// remote invocation
get the end time;

In the case of MOBA, remote execu-
tion is done by thread migration em-
ulating remote method invocation.
The migrant goes to the target ma-
chine with an argument and return.
the following code is deployed in the
migratory thread’s self:

// preparation
double[] argument =

new double[array size];
// measurement
get the start time;
go to the target machine;
argument = null;

// this discards the argument
return to the original machine;
get the end time;

Round trip time of remote execution

MOBA: 188n + 240

RMI: 303n + 3.57

HORB: 257n + 4.99

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5

Transferred data size (Mbyte)

R
ou

nd
 tr

ip
 ti

m
e

(m
se

c)

MOBA
RMI
HORB

Fig. 4. Round-trip time of remote execution.

As shown in Fig. 4, when the amount
of data transferred is small MOBA
takes more time than the ORBs do
because it moves the execution con-
text as well as data. Thus time taken
by a thread migration with MOBA is
larger than latency of a remote invo-
cation of ORBs, but the data trans-
fer throughput is better with MOBA
than with the other systems.

6 Conclusion

A migration system for Java threads
has been implemented as a plug-in
to an existing JVM, and it supports
asynchronous migration of execution
context. Some problems pointed and
discussed here were whether objects
reachable from the migrant should be
moved, how the types of values in the
stack can be identified, compatibil-
ity with JIT compilers, and how re-
sources tied to moving objects should
be handled.

As a further study, we are designing
a JIT compiler that can work well

with thread migration. Hereby asyn-
chronous and heterogeneous migra-
tion with execution of native code
will be got possible. And we have
already implemented a distributed
object system based on the JIT
compiler. So if it is integrated with
MOBA, selective migration of ob-
jects reachable from the migratory
thread and leaving the objects tied
to local resources will be possible.

References

[1] A. Acharya, M. Ranganathan, and
J. Saltz. Sumatra: A language for
resource-aware mobile programs.
In J. Vitek and C. Tschudin,
editors, Mobile Object Systems.
Springer Verlag Lecture Notes in
Computer Science, 1997.

[2] O. Agesen. GC points in a threaded
environment. Technical Report
SMLI
TR-98-70, Sun Microsystems, Inc.,
Dec. 1998. http://www.sun.com/
research/jtech/pubs/.

[3] B. Dimitrov and V. Rego. Arachne:

A portable threads
system supporting migrant threads
on heterogeneous network farms.
IEEE Transaction on Parallel and
Distributed Systems, 9(5):459–469,
May 1998.

[4] M. R. Eskicioğlu. Design issues of
process
migration facilities in distributed
system. IEEE Technical Comittee
on Operating Systems Newsletter,
4(2):3–13, Winter 1989. Reprinted
in Scheduling and Load Balancing
in Parallel and Distributed Systems,
IEEE Computer Society Press.

[5] S. Fünfrocken.
Transparent migration of java-
based mobile agents. In Proc.
of 2nd Int’l Workshop on Mobile
Agents 98(MA’98), pages 26–37,
Sept. 1998.

[6] General Magic, Inc. Odyssey
information.
http://www.genmagic.com/
technology/odyssey.html.

[7] S. Hirano. HORB: Distributed
execution
of Java programs. In Proceedings
of World Wide Computing and Its
Applications, Mar. 1997.

[8] E. Jul, H. Levy, N. Hutchinson, and
A. Black. Fine-grained mobility
in the emerald system. ACM
Transaction on Computer Systems,
6(1):109–133, Feb. 1988.

[9] D. Lange
and M. Oshima. Programming and
Deploying Java Mobile Agents with
Aglets. Addison Wesley Longman,
Inc., 1998.

[10] T. Lindholm
and F. Yellin. The JavaTM Virtual
Machine Specification. Addison
Wesley, 1997.

[11] ObjectSpace, Inc. Voyager.
http://www.objectspace.com/
products/Voyager/.

[12] M. Ranganathan, A. Acharya,
S. Sharma, and J. Saltz. Network-
aware mobile programs. In
Proceedings of USENIX’97, Jan.
1997.

[13] T. Sekiguchi. JavaGo
Manual, 1998. http://web.yl.is.s.u-
tokyo.ac.jp/amo/JavaGo/doc/.

[14] T. Sekiguchi, H. Masuhara, and
A. Yonezawa. A simple extension
of Java language for
controllable transparent migration
and its portable implementation.
In To appear in a Springer
Lecture Notes in Computer Science
for International Conference on
Coordination Models and
Languages(Coordination99), 1999.

[15] K. SHUDO. shuJIT—JIT compiler
for Sun JVM/x86.
http://www.shudo.net/jit/.

[16] Sun Microsystems, Inc. The Java
HotSpotTM

Performance Engine Architecture.
http://www.javasoft.com/
products/hotspot/
whitepaper.html.

[17] M. M. Theimer and B. Hayes.
Heterogeneous process migration
by recompilation. In Proc. IEEE
11th International Conference on
Distributed Computing Systems,
pages 18–25, 1991. Reprinted in
Scheduling and Load Balancing in
Parallel and Distributed Systems,
IEEE Computer Society Press.

[18] J. E. White. Telescript Technology:
The Foundation of the Electronic
Marketplace. General Magic, Inc.,
1994.

[19] A. Wollrath, R. Riggs, and
J. Waldo. A Distributed Object
Model for the Java(tm) System. In
The Second Conference on Object–
Oriented Technology and Systems
(COOTS) Proceedings, pages 219–
231, 1996.

