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SUMMARY Java Just-in-Time compilers have to satisfy a
number of requirements in conflict with each other. Effective
execution of a generated code is not the only requirement, but
compilation time, memory consumption and compliance with the
Java Virtual Machine specification are also important. We have
developed a Java Just-in-Time compiler keeping implementation
labor little. Another important objective is developing an ad-
equate base of following researches which utilize this compiler.
The proposed compilation techniques take low compilation cost
and low development cost. This paper also describes optimization
methods implemented in the compiler, for instance, instruction
folding, exception handling with signals and code patching.
key words: Runtime compilation, Java Virtual Machine, Stack
caching, Instruction folding, Code patching

1. Introduction

Just-in-Time (JIT) compilers for Java bytecode have
to satisfy a number of requirements, which are differ-
ent from those for ordinary compilers. Effective execu-
tion of a generated code is not the only requirement,
but the time and memory consumed by compilation
should worth performance gain because the compila-
tion takes place while the target program is running.
Java bytecode JIT compilers also suffer relatively strict
specifications of Java language and Java Virtual Ma-
chine (JVM). The rules in the specifications yield high-
reproducibility of execution results of Java programs on
different platforms. But part of the rules limit a class
of optimizations and performance improvement by the
compilers.

Because of conflicting requirements for Java run-
time, a number of different runtimes have naturally
appeared and even an individual runtime takes dif-
ferent options on its behavior according to character-
istics of user programs. For instance, Sun Microsys-
tems’ HotSpot Server VM has a JIT compiler special-
ized to computation-intensive application. The com-
piler spends much time on compilation of code segments
which have been recognized as “hot spot”, a code seg-
ment expected to run many times. Oppositely, a run-
time for embedded application tends to save power con-
sumption rather than performance improvement.

We developed a JIT compiler along the following
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policies.

1. Ease of use as a base of researches.
2. Cost-effective development. Less labor and rela-

tively much effect.
3. Adequate quality and performance for practical

use.

Compiler development involves much work on a
parser, intermediate representations and a number of
optimizations. Because of it, we have to consider those
human and engineering factor seriously in addition to
technical requirements like performance. Our plan on
the development of the JIT compiler was to have a prac-
tical compiler with work several man-month. Our an-
other goal was specifically having a research base on
which we do following researches with less labor while
developing it with less work.

It is known that development efforts need vast
work when extreme high performance is set as one of
the goals. We do not head such a goal and set our line
to baseline compiler, which saves compilation time and
memory.

In this paper, we present cost-effective code gener-
ation and optimization methods we have implemented
in the JIT compiler and their effects. The code genera-
tion technique is template connecting. The code gener-
ator basically connects given templates of native code
corresponding to internal instructions. In addition to
the technique, stack caching [1] was implemented in the
compiler and the technique makes use of multiple reg-
isters over templates. There have been a JIT compiler
which caches only the top of stack on a register and a
bytecode interpreter of Sun Microsystems’ Classic VM
which does dynamic stack caching. But there has been
no JIT compiler stack caching is applied to and the JIT
compiler we have developed is the first case. This tech-
nique, template connecting with stack caching achieved
utilization of multiple registers with less compilation
cost. Furthermore the compiler became easy in use as
a base of researches because the template connecting
technique allows us to modify native code generated by
the compiler directly as mentioned in 2.

In the next section, we describe an overview of the
JIT compiler shuJIT and present the structure of the
compiler and the code generation method. And we dis-
cuss how they affect easiness in use as a research base
and the compilation cost. In 3, pros and cons of the
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x86 native code
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Translation into shuJIT internal code

Optimization

Replacement with native code

Fig. 1 Structure of shuJIT.

stack caching technique in this compiler are discussed.
After effects of optimizations implemented in the com-
piler are shown in 4, two important factors which af-
fect usability, peak performance and invocation time
are evaluated in 5. We conclude with 6.

2. Overview of the JIT Compiler

We have been developing and distributing shuJIT, a
Java bytecode Just-in-Time (JIT) compiler. The com-
piler supports Intel’s IA-32 processors, known as x86,
and Linux, FreeBSD and NetBSD OSes. Except tem-
plates of generated native code, which are written in as-
sembly code for x86, the compiler is in C language. The
compiler works with a Java Virtual Machine (JVM)
Classic VM, which are distributed with Sun Microsys-
tems’ Java 2 Platform, Standard Edition (Java 2 SE)
and Java Development Kit. ShuJIT is expected to work
on PC or more rich environments as declared with sup-
porting architecture and OSes.

Practicality, stability and reliability for daily use
were also our goals while ease of use as a research base
is one of the goals. Compliance with the JVM specifi-
cation [2] is, of course, one of the important goals. If
a compiler does not achieve one of these goals, derived
researches from the compiler ought to lack reality. We
could have a certain number of users of shuJIT as the
compiler achieved those goals. There were over 7500
downloads of the source code and about 8500 down-
loads of the binary for 2 and a half years since its first
release in September of 2001.

Fig. 1 shows an overview of the compiler. First, the
compiler translate Java bytecode instructions in a given
method to shuJIT internal instructions. The compiler
then applies optimization techniques to the internal in-
structions. The techniques described in 4 are instruc-
tion folding (4.2), inlining (4.5 and 4.6) and direct
invocation (4.1). Finally the compiler translates the
internal code to x86 native code and resolve function
calls. Fig. 2 is an example of compilation by shuJIT.

The intermediate representation, shuJIT internal
code is extended Java bytecode and has peculiar in-
structions. Translation process from Java bytecode to

.....
daload
dmul
dadd
dastore
.....

fill_cache
array_check
laload

flush_cache
dld
dmul
dst

flush_cache
dld
dadd
dst

fill_cache
lastore

fill_cache
array_check
daload_dld
dmul
flush_cache
dadd
dst_dastore

addl   $8, %esp
fmull  (%esp)

Java
bytecode

shuJIT
internal code

x86
native code

shuJIT
internal code

(Part of Linpack#daxpy method)

movl (%edx), %eax
fldl    (%eax,%ecx,8)

.....

.....

Translation into
shuJIT internal code

Optimization

Replacement
with native code

Fig. 2 An example of compilation.

the internal code is just one-to-one or one-to-many re-
placement.

Native code generation in the last stage of compila-
tion is achieved by replacement of the internal instruc-
tions with templates, which are pre-compiled pieces
of native code. The compiler has the templates be-
cause compiler developers provided them. The pre-
pared templates were written as simulating JVM stack
with hardware-supported stack of the processor. Java
bytecode instructions push a value on a JVM stack are
basically translated to processor’s push instructions.

The aims to adopt such a template connecting
technique are as follows.

• Saving of development cost.
• Easy modification of generated code.
• Control of compilation cost.

The technique eliminates the need of assembler in the
compiler and we could save the labor on its develop-
ment. Assembler is not necessary because the prepared
templates which have native code can be assembled
while the compiler itself is compiled by a C compiler.
Development cost of an assembler for x86 is relatively
high compared with one for RISC processors because
bit patterns of x86 machine instructions are not very
regular.

48 days after the start of its development, the com-
piler started working and could compiled simple Java
programs. It is difficult to compare the development
cost with other software, but the cost seems to be very
low as cost of JIT compiler development.

Generated native code can be directly modified by
making changes on the templates because the templates
appear in the generated code directly. It is a natu-
ral conclusion that the compiler is easy to be applied
to researches which need modification of generated na-
tive code. The compiler has been utilized as a base of
such researches [3]–[5] because of the property. Because
usual compilers use a more fine-grain internal represen-
tation like GCC’s RTL just before code generation, it
is not possible to modify generated code directly and
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Fig. 3 Cache states.

such a modification can be carried out in an indirect
way. And further, such a modification often needs care
to code elimination, order modification of machine in-
structions and so on. Such care includes suspension of
optimizations and making temporary dependence be-
tween instructions.

On the other hand shuJIT’s template connecting
such a drawback as templates are dependent on one pro-
cessor architecture like x86. Even if you make a change
on templates for x86 processors, the change does not
affect templates for SPARC processors. ShuJIT sup-
ports only x86 processors currently because one of the
goals of the development is ease of development. Tem-
plates have to be re-implemented for other processor
architectures to support them.

We expected a lower compilation cost of the tem-
plate connecting technique. Code generation takes lin-
ear time proportional to the length of internal code se-
quence. Not only code generation, but calculation and
space cost of entire compilation process are also limited
to O(n) not to spoil the compiler’s merit as a baseline
compiler.

3. Stack Caching

One significant problem of the template connecting
technique is difficulty in register allocation. It is dif-
ficult to utilize multiple general-purpose registers over
templates with the technique even though it is a key to
high-performance to make good use of the registers. A
Java bytecode JIT compiler TYA [6] also uses the tem-
plate connecting technique and it is an instance of such
a compiler which use only one general-purpose register
over templates. Native code TYA generates caches a
value on the top of the JVM stack on a register.

In order to improve register utilization, we imple-
mented stack caching [1] technique in shuJIT. JVM
stacks are basically placed on main memory but values
around the top of the stacks are cached on registers. We
defined 5 cache states corresponding to how stacks are
cached as shown in Fig 3. In this case 2 registers can
be exploited to cache stacks. 5 templates corresponding

shuJIT internal code
(part of Linpack#daxpy method) :
         ...
  (1)   iload
  (2)   iload
  (3)   iconst_1
  (4)   isub
  (5)   iload
  (6)   iconst_1
  (7)   isub
  (8)   iastore1
  (9)   fill_cache
  (10) array_check
  (11) iastore
         ...

Code generation process :
  (1)  Emit the native code for "iload in state 0".
  (2)  Emit the native code for "iload in state 1".
  (3)  Emit the native code for "iconst_1 in state 2".
  (4)  Emit the native code for "isub in state 4".
        .....

(1) iload

(2) iload

(3) iconst_1

(4) isub

(5) iload

(6) iconst_1

(7) isub

(8) iastore1

(9) fill_cache

(10) array_check

(11) iastore

state 0

state 1

state 2 state 4

state 3

Fig. 4 An example of state transition.

to 5 cache states are needed for 1 shuJIT internal in-
struction. When generating native code, next template
is chosen according to the state in which the previous
template ends its execution. An example of template
connecting process is shown in Fig. 4.

Dynamic stack caching has been often imple-
mented in a interpreter and there has been an imple-
mented instance in JVM, The interpreter in Sun Mi-
crosystems’ Classic VM. The implementation defined 3
cache states and dynamically choose native code im-
plementing next bytecode instruction. But there has
been no JIT compiler the stack caching is applied to
and shuJIT is the first case.

Lazy code selection [7] is a code generation tech-
nique related to a technique of shuJIT. Both those tech-
niques replace quasi-bytecode with native code directly
and try keeping compilation process light. In Lazy code
selection, generated native code can use 3 scratch reg-
isters to cache stack values. And a code generator pro-
vides and uses mimic stack to track where stack values
are cached on during code generation. This tracking
technique is corresponding to the technique of shuJIT
in which a cache state is tracked. A code generator
along the lazy code selection folds a load instruction
and an arithmetic instruction into one machine instruc-
tion exploiting rich addressing modes of x86 ISA. In
case of shuJIT, such folding is achieved by hand writing
of templates and instruction folding during optimiza-
tion. Points of difference include the number of regis-
ters for caching and register allocation to local variables
by lazy code selection. Consequently, quality of gener-
ated code by lazy code selection is expected to be better
than shuJIT and code generation cost of shuJIT will be
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lower than lazy code selection because of simpleness.
It is difficult to measure effect in performance of

stack caching added to the simple template connecting.
It is due to lack of JIT compiler which implements both
of simple template connecting and stack caching. But
all scores of shuJIT are above those of TYA (see 5.1).
TYA also implements a template connecting technique
but no stack caching. Native code generated by TYA
caches only the top of stack with EAX register (Fig
reffig:states).

Stack caching can improve performance of gener-
ated native code. On the other hand, development work
of a JIT compiler increases because a compiler devel-
oper has to provide some templates corresponding to
each cache state. In case of shuJIT, 5 states were de-
fined and 5 templates are needed. But the amount of
work to provide 5 templates is not always 5-fold because
5 templates are almost same except register names in
many cases. In compiled form 5 templates take 5 times
as large as a template and the JIT compiler takes more
space compared with a compiler without stack caching.
But the the assembled template takes only about 30
kilobyte of disk and the amount of the space does not
cause problems on PC.

Stack caching enabled the compiler to utilize mul-
tiple general-purpose registers. 2 as the number of reg-
isters which the compiler uses is not large number but
the number of free registers on x86 is limited. X86 ISA
originally provides only 8 general-purpose registers and
8 registers include a stack pointer and a base pointer.
ShuJIT uses remaining 4 registers someway. One reg-
ister is used to cache a base address of JVM local vari-
ables and other 3 registers work in a template.

4. Optimization Techniques

ShuJIT implements not only well-known code optimiza-
tion techniques such as instruction folding, tail recur-
sion elimination and inlining but cost-effective tech-
niques. They include direct invocation between com-
piled methods, exception handling with OS signal and
code patching. All implemented optimizations take
O(n) time and space cost at most assuming that n is
the length of bytecode.

Even a well-known technique possibly shows dif-
ferent effects depending on the code generation method
of shuJIT and the property of JVM. For example, OS
signal can be exploited to obey the JVM specification
without a performance penalty. Instruction folding is
further effective for the template connecting code gen-
eration because a JVM is a stack machine. On the
other hand the ability of inlining is not fully exploited
for lack of inter-method optimization in the compiler.

In this section, we report optimization techniques
implemented in shuJIT, their effects in performance
and memory consumption, implications in the code
generation method and the JVM specification.

Native code
generated by shuJIT

invocation
Helper ()

invoke
JITCompiled

Method ()

invoke
(JNI)Native
Method ()

A native method ......

Common invocation interface
of Sun’s Classic VM

Common
invocation interface

(provided by shuJIT)

(provided by Sun’s Classic VM)

(provided by shuJIT)

Direct invocation

Fig. 6 Direct invocation between compiled methods.

Fig. 5 shows the effects on the scores of SPEC
JVM98 benchmarks on 1.7 GHz Pentium 4. The scores
in case all optimizations are applied are represented by
100 %. Therefore a lower number means more decline
of the score and the optimization technique was effec-
tive.

4.1 Direct Invocation between Compiled Methods

In a JVM, various kinds of methods co-exist simulta-
neously, such as methods left as bytecode and executed
by an interpreter, native methods written in C or C++
language, methods compiled by a JIT compiler. There
needs agreed calling convention to call each other be-
tween different kinds of methods. One of popular ways
to achieve this purpose is having the single common
calling convention (Fig. 6). Classic VM, a JVM which
shuJIT works on, defines the common interface as fol-
lows.

bool_t <method name>
(JHandle *o, struct methodblock *mb,
int args_size, ExecEnv *ee)

The invokeJITCompiledMethod() in Fig.6 is a
wrapping function shuJIT provides to adjust difference
between the common interface and calling convention
of the compiled native method. There are differences in
stack growing direction and place of stack in memory.
Because of it the wrapping function re-stack values on
the stack for the caller onto the stack for the callee.

But, in case that a compiled method calls another
compiled method such a call to the wrapping function
is not necessary because the common interface does not
has to be involved and re-stacking is not needed. The
JIT compiler then omit a call to the wrapping function
if it is allowed. A compiled method can call directly
another compiled method without an overhead of a call
to the wrapping function if the call is omitted.

Even in case of the call omitted, dynamic identi-
fication of the callee is still needed. When a compiled
method calls another method, the caller has to identify
in runtime whether the callee is a compiled method or
not because the callee cannot always be identified when
the caller is compiled. For example even if the callee
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Fig. 5 The impacts of each optimization on SPEC JVM98 scores.

is a compiled method when the caller is compiled, the
callee is possible to be overridden by another kind of
method like a native method. The compiler generates
such a code which perform the identification.

The identification naturally needs a conditional
branch and the branch involves a runtime overhead.
We then implemented another optimization which elim-
inates the identification. The identification can be elim-
inated if the callee is a static, private or final method
and the compiler do it.

We have to notice that JIT compilation of a
method is not always completed. Even when a method
cannot be compiled for some reason, the method is still
executed by an interpreter. It is better than termina-
tion of program execution. The compiler has to confirm
it can compile the callee successfully before it elimi-
nates the identification in the caller. To confirm it,
the compiler has to actually compile the callee because
compilation failure occurs for unexpected reasons.

The compiler then eagerly compiles the callee if it
is a static private or final method and the callee has not
yet been compiled. The compiler determines whether
it can do the optimization according to the result of the
compilation.

One drawback of this optimization is possibly
wasteful compilation. If callees compiled for the con-
firmation have never been called at last, the time and
the space consumed by the compilation are wasted. Be-
cause this optimization have pros and cons as explained
here, it can be disabled when the compiler is compiled
by a C compiler.

Another possible way to avoid such wasteful com-
pilation is code patching technique on the caller. In the
case the compiler compiles a callee lazily when it is just
called and modifies the call in the caller in runtime. But
this way is complicated and another drawback. There
always needs a code for the identification in a callee

and it cannot be omitted. There is a trade-off as the
technique will needs more space in a caller and can save
eagerly wasteful compilation of callees.

As a result of the optimization described here, the
score of Method benchmark in CaffeineMark 3.0 was
improved from 1780 to 7652. The ratio of the improve-
ment is about 4.3. The impact of the optimization on
the scores of SPEC JVM98 is much as shown in Fig. 5.
The synthesized score of SPEC JVM98 rose to 1.7 times
as the original score.

The effect on 213 javac benchmark is the least and
the score of it became 1.1 times as the original score.
As the best case the score of 227 mtrt benchmark rose
to 2.9 times. These results also show 227 mtrt is very
sensitive to efficiency of method call.

4.2 Instruction Folding

Instruction folding is a well-known optimization tech-
nique by which multiple instructions are replaced to a
less number of instructions which equal the original se-
quence of instructions. It is known that the technique
is effective in a stack machine in particular. Applica-
tion of the technique to Java processors has been often
considered and carried out [8]. The picoJava [9] is an
instance of such implementations. The technique is ex-
pected to have much effects similar to Java processors
in shuJIT because the compiler yields many stack op-
erations due to its code generation method (see 2).

For example, a Java compiler like javac emits a
pop instruction and a following push instruction to
copy the top of stack to a local variable. The byte-
code sequence is istore and iload if the value is 32
bit integer. ShuJIT’s code generator naively translates
this sequence to machine instructions as a pop and a
push if any optimization is not performed. It is not
desirable that the resulted sequence involves 2 memory
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operations. Instruction folding technique replaces this
sequence with a single copy instruction.

ShuJIT performs instruction folding on its internal
instructions. The main purpose of the optimization is
to reduce memory accesses. Value copies between mem-
ory and register are reduced by the optimization. The
following operations are targets of the optimization to
be replaced with lighter operations. The optimizer finds
these sequence of internal instructions and replaces the
sequence with another internal instructions which do
not perform the copies in parentheses.

1. Stack → local variable (→ stack)
2. Floating-point register (→ stack) → floating-point

register
3. local variable or array (→ stack) → floating-point

register
4. floating-point register (→ stack) → floating-point

register

For instance, a sequence of istore and iload is re-
placed with an alternative internal instruction istld,
which copy a value only once. This folding is an exam-
ple of 1 on the above list.

Local variable in the above list means a construct
of Java language and JVM and shuJIT places them on
memory. Similarly, stack is a construct of Java lan-
guage and JVM and basically placed on memory by
the compiler. But values around the top of stack are
cached on integer registers as described in 3.

In this manner, the code generator of shuJIT ex-
ploits integer registers but effective use of floating-point
registers are not taken into account. ShuJIT compen-
sate it by instruction folding and reduce wasteful copies
of floating-point values. Such a purpose and effects are
peculiar to shuJIT even though instruction folding itself
is a well-known technique.

In reality, the effect on the 222 mpegaudio bench-
mark which has many floating-point operations is high-
est among SPEC JVM98 benchmarks. The technique
improved the score to 1.16 times as the original score as
shown in Fig. 5. We also examined the effect on Linpack
benchmark. Almost all its operations are floating-point
arithmetic. The problem size is 500 × 500 in this case.

Without instruction folding 14.042 Mflops
With instruction folding 19.083 Mflops

The score was much improved by the technique to 1.36
times as the original.

If the compiler can cache floating-point values with
the stack caching technique (3), cases from 2 to 4 in
the above list will be treated by the technique and
not needed to be folded. But it will take much cost
to increase the number of cache states And the com-
piler will have to track and identify the type of a value
on stack to choose an appropriate template for a byte-
code instruction which operates on both of integer and
floating-point, such as pop, pop2, dup and dup2.

4.3 Exception Detection with Signal

Exception detection in Java runtime is often achieved
utilizing a signal mechanism of UNIX-like OSes. A run-
time can detect several kinds of exception without any
conditional branch and it does not suffer any overhead
if an exception is not thrown.

ShuJIT utilizes the signal mechanism as follows.

• Detects NullPointerException with SIGSEGV.
• Detects ArithmeticException with SIGFPE.
• Detects StackOverflowError with SIGSEGV.

Detection of the first 2 kinds of the exceptions with sig-
nal is common to Java runtimes. In addition to them,
shuJIT also uses signal to detect StackOverflowError
which means a stack overflow.

Because the null in Java language and JVM is rep-
resented with address 0, an access to it violates mem-
ory protection and causes SIGSEGV. The runtime can
detect NullPointerException by catching the signal
SIGSEGV. Besides, ArithmeticException can be de-
tected with SIGFPE thrown in case of zero division.

To detect a stack overflow, A method compiled by
the compiler accesses a further address in a stack grow-
ing direction. Memory protection mechanism of the
processor causes SIGSEGV if the stack will soon run up.
The actual address to be accessed in this time depends
on the platform, as the kind of libc and OS. A mar-
gin of stack space needed to execute a signal handler
and handle the thrown exception is dependent on the
platform.

Exception detection with signal does not suffer any
performance penalty in case an exception is not thrown.
But a cost to handle an exception increases because
the process for a preparation and a catch of signal is
heavier than detection with a conditional branch. For
that reason, the performance of a program involving
many exception handling can fall down by such signal
utilization.

Effects of the signal utilization depend on behavior
of a program, especially frequency of exceptions. We
can expect a good program does not throw exceptions
very often because it is recognized as a good practice
to use an exception only in exceptional case. In reality
the scores of the SPEC JVM98 benchmark set improve
with signal utilization as shown in Fig. 5.

How much frequency of exceptions does the tech-
nique tolerate? To estimate the threshold, we mea-
sured and compared the amount of positive effect on
the normal case with no exception thrown and the
amount of negative effect on the opposite case. The
benchmark program we provided reads an instance vari-
able via an object reference. The program throws a
NullPointerException if the reference is null (excep-
tional case) and does not throw if the reference is not
null (normal case). As to both cases, we measured
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void signal_handler(int sig, ...) {

struct sigcontext *sc = ...

<obtain the signal context>;

switch (sig) {

<transact the received signal>

(i.e. throwing an exception);

}

<modify the program counter

in the signal context obtained above>;

return;

}

Fig. 7 Signal handling for catching an exception.

how much effect the signal utilizing technique made on
performance.

On 1.7 GHz Pentium 4, execution time in the nor-
mal case reduced by 136 milliseconds per a billion times
reads. Oppositely, the time in the exceptional case in-
creased by 12302 milliseconds per a million times reads.
On 600 MHz Pentium III, the time in the normal case
reduced by 334 milliseconds per 10 million times reads
and the time in the exceptional case increased by 1521
milliseconds per 100 thousand times reads. The follow-
ing numbers are the ratios of the increased time in the
exceptional case to the reduced time in the normal case.

1.7GHz Pentium 4 90500 times
600MHz Pentium III 4600 times

Therefore we can estimate that the signal utilizing tech-
nique is worth being applied in case the frequency of
exceptions thrown is lower than once a 90500 execu-
tions of such an instruction which possibly throw the
exception.

Fig. 7 shows the process of the signal handler for
catching an exception. The handler first obtains the
context of the thread (sigcontext type) in which the
exception is thrown. Next, it identifies the kind of the
thrown exception according to the kind of the signal
and the context. It then throws the exception. It fin-
ishes after it updates the program counter in the con-
text whereby following execution starts at the appro-
priate catch clause or a return instruction.

4.4 Code Patching

The Java language specification [10] strictly prescribes
the timings at which a class is initialized, as its static
block is executed and static variables are initialized.
The rule is cumbersome for a JIT compiler as a mere
access to a static variable and a call to a static method
can bring about a class initialization. For example, a
class has to be initialized immediately and first when a
static variable of the class is accessed and the class has

    ......
    NOP
    NOP
    Code which has to be executed only once
    Replace the above "NOP"s with "JMP done"
done:
    ......

Native code generated by shuJIT :

After executed once :

    ......
    JMP done
    Code which has to be executed only once
    Replaced the above "NOP"s with "JMP done"
done:
    ......

Executed
only once

Skip the code
executed once

Fig. 8 Overwriting a jump instruction onto a NOP instruction.

not been initialized yet. It is easy for a JIT compiler to
initialize the class when compiling an accessing method
but it is not allowed.

A conditional branch is a naive means to imple-
ment such a just-in-time initialization. But it is not
very efficient because it involves overhead to execute
the branch every time even the second time and later.
the branch is not necessary to the second and later
execution of the access to the static variable. It is de-
sirable to avoid the overhead. In many actual cases
the compiler can eliminate the conditional branches if
the accessed class has been already compiled. But it
is better to be able to eliminate the branches in other
cases.

A way to avoid such conditional branches is de-
ferment of compilation, which shuJIT did not adopt.
The way is not to compile a method until all accesses
to static variables and calls to static methods in the
method are executed at least once. Cumbersome just-
in-time initialization of a class does not occur after all
touches to static variables and static calls are once ex-
ecuted. Borland’s JBuilder Java 2 JIT adopted this
way but it is incomplete. The JIT compiler compiles a
method on its second invocation. It is incomplete be-
cause the first execution of the method cannot certainly
pass through all the touches. One of serious problems
of this means is that once an interpreter starts exe-
cuting a method, the execution can last long. It is a
problem because an interpreter is usually inferior to a
JIT-compiled method in performance.

The method of shuJIT is different from the defer-
ring means and the compiler ensures the just-in-time
initialization even though the compiler has once com-
piled the accessing method.

4.4.1 Method of shuJIT

ShuJIT uses code patching technique to ensure the
rule without suffering the above-mentioned interpreter
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Write "INT 3"
on the native code

generated by shuJIT.

Signal handler :
void signal_handler(...) {
    Do the operation which have to
    be executed only once; (*)

    Write back the originally
    generated code on "INT 3";

    Modify the program counter
    in obtained signal context;
}

......
INT 3
......

Native code
generatd by shuJIT

Control flow

(*) In reality, the signal handler do not execute the required operation by itself.
Instead the signal handler generates a trampoline code which jumps to
the operation and set the address of the trampoline into the obtained signal context.
Hence the operation is executed after the signal handler returns.
If the signal handler executes the operation by itself, more signals can occur
in the operation even though the signal handler has already been running.

Fig. 9 Overwriting the original instruction onto an instruction
to cause software interruption.

problem. That is to rewrite part of a compiled code
just after its first execution to prevent its second exe-
cution. The technique enables the compiler to compile
the method on its first invocation without any perfor-
mance penalty a conditional branch introduces. It is an
important requirement to be able to compile a method
on its first invocation because the compiler should be a
baseline compiler. A baseline compiler should be light-
weight and complements other kinds of compilers ex-
ploiting a peak performance. It can be even an alter-
native to an interpreter and in that case it compiles
a method on its first invocation. Code patching tech-
nique for the just-in-time initializations is suitable to
a baseline compiler because it enables compilation on
the first invocation without any performance penalty in
later executions.

We implemented two methods and can choose one
of then when compile the compiler itself.

• Fig. 8: overwrite a jump instruction onto no oper-
ation instructions (NOP) (jumping method)

• Fig. 9: overwrite the original instructions which
should be there onto a software interrupt instruc-
tion (INT) (interrupting method)

The compiler uses the only one-byte interrupt instruc-
tion INT 3 (0xCC) as the software interrupt instruc-
tion. Code patching like these has to be carried out
atomically to avoid inconsistent code sequence expected
to other processors and threads. Lock of a memory bus
is necessary to assure the atomicity in a case. The lock
makes the patching complicated and involves a perfor-
mance penalty. In contrast to that, rewriting 1 byte
is always atomic without any lock on x86 and other
modern processors.

The jumping method shuJIT implements rewrites
2 bytes of code. The compiler uses XCHG instruction,
not usual MOV instruction, to ensure the atomicity
while patching 2 bytes. It is the same method as ORP
[11]. Note that it is also possible to implement a kind
of jumping method with 1 byte patching. It can be
achieved by rewriting only the target of the jump in-

No operation
instructions (NOP)

Jump instruction (JMP)

Software interrupt
instruction (INT)

No operation
instructions (NOP)

Jump instruction (JMP)

shuJIT’s methods

Implementable but useless methods

Original instructions

Useful methods

Overwritten instruction Overwriting instruction

Fig. 10 Various implementation methods for code patching.

struction.
Both of the jumping method and the interrupting

method have their own advantages. With the jump-
ing method, a jump instruction has to be executed in
second and later executions. On the other hand, the
interrupting method can eliminate such performance
penalties completely. But we should take account of
the amount of memory consumption. It depends on the
implementation and application programs. The size of
compiled can be smaller with the interrupting method.
But the interrupting method needs a table holding the
original instructions which is overwritten onto a soft-
ware interrupt instruction.

4.4.2 Other Possible Methods

There could be other methods to rewrite code. As
shown in Fig. 10, there are several ways to implement
code patching corresponding to pairs of the kind of
overwritten instructions and the kind of overwriting in-
structions. The ways to overwrite the original instruc-
tions eliminate any performance penalty in second and
later execution. On the other hand, the ways to over-
write no operation instructions or jump instructions do
not need a table to hold the original instructions.

4.5 Inlining

Inlining is a well-known and frequently implemented
optimization technique, which reduces the number and
cost of method calls and introduces more opportunities
of inter-procedual analysis and optimizations.

ShuJIT inlines a method if the compiler can iden-
tify which method is actually called and some condi-
tions are satisfied. In other words, in case the method
being called is a static, private or final method the
compiler do it. More specifically, the targets of in-
lining are non-virtual calls with invokespecial and
invokestatic bytecode instructions and a call to a fi-
nal method with invokevirutal instruction. In addi-
tion to the kinds of a call, when the following conditions
are satisfied the compiler do the inlining.
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• The callee does not have a jump instruction.
• The callee does not have a catch clause.
• The length of the callee is equals to or less than

20.
• Both of the caller and the callee are strictfp [5],

[10] or both are not strictfp.

ShuJIT applies the inlining to a method twice and the
nesting level of inlining, in which a method is inlined
into an already-inlined method, is 2.

The above magic numbers, 20 and 2 are parame-
ters which determines how often inlining happens. We
can specify them when invoking a JVM. Inlining can
make performance worse by filling up instruction cache
if it is applied excessively. We determined those de-
fault parameters 20 and 2 heuristically to inline acces-
sors (getter and setter methods) while preventing over-
inlining. Inlining of accessors is certainly cost-effective
because they are small and the call cost is relatively
high compared to the execution cost.

We determined not to inline a method having a
jump or a catch clause because such an inlining will
take more compilation cost including resolution of jump
targets. Sun Microsystems’ ExactVM took the same
policy.

The effects on SPEC JVM98 are not significant as
shown in Fig. 5. The effect on 228 jack is the largest
and 3 % and the effect on the synthesized score of SPEC
JVM98 is 1 %. One possible reason is that the tar-
get of the inlining is limited to non-virtual calls. An-
other one is template connecting code generation. With
the code generation technique of shuJIT, inlining does
introduce more opportunities of inter-procedual opti-
mizations and its merit is limited.

4.6 Special Inlining of Specific Methods

We also tried another type of inlining. The technique
just replaces a specific method with already-provided
native code. We provided the native code by hand. Its
implementation in shuJIT is fairly simple and does not
much work. We just provided a internal instruction and
templates for the target method and the compiler re-
places a call to the method with the internal instruction
when parsing bytecode.

We choose the methods of java.lang.Math class
as the first target of this technique. The target has to be
a static or final method to be inlined without any run-
time decision and the target methods are static. And
further, they are native methods written in C or C++
language, which are especially expected to be improved
for the reason we describe later.

sqrt, sin, cos, tan, atan2, atan, log, floor,
ceil

We decided not to apply the special inlining to methods
known as its return value changes by this technique,

Table 1 Execution times to invoke the sqrt method 10,000,000
times.

Pentium 4 Pentium III

Without special inlining 15535 34959
With special inlining 851 1567
Improvement ratio × 18.3 × 22.3

(milliseconds)

such as exp.
Performance of calls to those methods improves for

the following two reasons.

• Execution of the method body become faster.
Floating-point instructions can be used instead
of the software implementation of arithmetics
fdlibm.

• Calls to native methods are reduced.

There are two classes which have the same set of
methods, java.lang.Mathand java.lang.StrictMath.
The special inlining is necessary to exploit performance
of the Math class. StrictMath has to yield the ex-
actly same results as Freely Distributable Math Library
(fdlibm), which is a software-implemented mathemat-
ics library. The specification of StrictMath prescribes
it. The Sun Microsystems’ and the IBM’s JVM which
we use in this paper use the fdlibm itself. In contrast to
StrictMath, Math is not required to produce the same
result as the fdlibm. Because of it Math class can do
calculation for its methods in more efficient way than
StrictMath and fdlibm, for example, using floating-
point instructions of hardware. But both of Sun’s and
IBM’s Math class is just a proxy for StrictMath class,
a call to Math class is redirected to StrictMath and
the calculation is carried out by fdlibm. For that rea-
son, those JVM always use fdlibm unless the JVM can
recognize and deal with calls to Math class. To exploit
more efficient ways than fdlibm, special handling of
Math class by JVM like shuJIT’s special inlining is nec-
essary.

The other reason why performance improvement is
expected is reduction of calls to native methods. The
Math methods listed above are native methods com-
pliant with JNI, the convention for call between Java
and native methods. A call to a JNI native method
is known as a heavy process. One of the reasons of it
is re-stacking of stack values. When Java code calls a
JNI native code, it is usually unavoidable to stack val-
ues on a Java stack onto a stack for the native method.
General inlining technique cannot eliminate such a re-
stacking unless the stack layout of JIT-compiled code
is the same as JNI’s one. It is unlikely for performance
reason. Only special handling like shuJIT’s special in-
lining has an effect on calls to native methods.

We measured the effects on performance with calls
to sqrt and sin methods. Table 1 and 2 show the
results on 1.7 GHz Pentium 4 and 600 MHz Pentium III
respectively. These results demonstrate effectiveness of
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Table 2 Execution times to invoke the sin method 10,000,000
times.

Pentium 4 Pentium III

Without special inlining 4242 8021
With special inlining 1567 2226
Improvement ratio × 2.71 × 3.60

(milliseconds)

the technique as 20 times in case of sqrt and 3 times
even in case of sin. We have to notice that such a
technique is effective on a limited number of programs
which call specific methods frequently. For example, we
could not see any effect on the scores of SPEC JVM98.
But it is still very effective in special cases.

The special inlining of shuJIT needs modification
to the compiler itself to support more methods even
though the modification is easy. It is a better design
to support a software component implementing an op-
timization. Such a component is attached to and de-
tached from the compiler and the addition does not
require any modification to the compiler itself.

4.7 Memory Alignment of Loop Heads

ShuJIT aligns the loop heads with on a 16 byte bound-
ary. This is a known technique effective on Pentium
Pro, Pentium II and Pentium III processors, which
fetch 16 bytes from the instruction cache once. Though
the effect on Pentium 4 is different from them. L1 in-
struction cache of Pentium 4 is a trace cache and it
is not affected by memory alignment of instructions as
long as instructions are found in the trace cache.

This technique does not always improve perfor-
mance. The alignment naturally yields wasteful spaces
between machine instructions. The spaces is filled with
no operation instructions (NOP) or a jump instruction
in case that the space is large enough to be skipped.
Those no operation and jump instructions involve a bit
of overhead and performance gain is not always larger
than the overhead. And the size of generated code in-
creases and it is possible to have a bad effect. However,
the synthesized score of SPEC JVM98 on Pentium 4
improves a little as shown in Fig. 5.

5. Performance Evaluation

In this section, we compare shuJIT with other JIT com-
pilers in peak performance and application startup time
to clarify its position.

5.1 Peak Performance

We adopted SPEC JVM98 benchmark suite and Lin-
pack benchmark to measure peak performance of JIT
compilers including shuJIT. The benchmark results are
shown in Fig. 11 and Fig. 12. All runs of SPEC
JVM98 reported in this paper are compliant with the

Linpack Benchmark

500 x 500

1.7 GHz Pentium 4

0 50 100 150

IBM JDK 1.3.0

HotSpot Client VM

HotSpot Server VM

OpenJIT

ORP (O3 JIT)

ORP (O1 JIT)

shuJIT

Kaffe

TYA

interpreter

sunwjit.so

MFlops

Fig. 12 The result of Linpack Benchmark for Java.

run rules prescribed by the SPEC, the benchmark de-
velopment and maintenance body. All codes of the
SPEC JVM98 were loaded from a web server. They
were started as an applet by the “Auto Run” button
with benchmark size 100. Even adjustable parameters
are left as the default values in the property file dis-
tributed with SPEC JVM98 (props/user). In detail,
each benchmark runs from 2 times at least (automin=2)
to 5 times at most (automax=5) and the best result
is chosen. But the iterative runs are discontinued
unless a score exceeds the score of the previous run
by 3 % (percentTimes100=300). The iterative runs
take intervals of 500 milliseconds (autodelay=500)
and a call to System.gc() and a following call to
System.runFinalization() (autogc=true).

SPEC JVM98 benchmark suite has 7 benchmark
programs and the final score is synthesized from their
execution times. The score is the geometric mean of
reciprocal numbers of normalized execution times. Lin-
pack benchmark solves a dense system of linear equa-
tions and its score is represented in Flops, floating point
number operations per second. In both benchmarks,
higher means better.

Investigated JIT compilers target PC or more
rich environments like so-called server as well as shu-
JIT. They are HotSpot Server VM and Client VM of
Sun Microsystems’ Java 2 SE 1.3.1 02, IBM Java 2
SE 1.3.0 [12], Intel ORP (Open Runtime Platform)
[11], Transvirtual Kaffe 1.0.6, TYA 1.7v3 [6], Open-
JIT 1.1.16 [13], sunwjit.so distributed with Java 2 SE
1.2.2 by Sun Microsystems, and a bytecode interpreter
of HotSpot Client VM. The PC on which all results
are produced has a 1.7 GHz Pentium 4 and runs Linux
2.4.18-pre3 if any notice is not given.

Note that ORP and Kaffe could not produce SPEC
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SPEC JVM98

1.7 GHz Pentium 4
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_227_mtrt _202_jess _201_

compress

_209_db _222_

mpegaudio

_228_jack _213_javac Geometric

Mean

HotSpot Server VM

IBM JDK 1.3.0

HotSpot Client VM

OpenJIT

shuJIT

TYA

sunwjit.so

interpreter

Fig. 11 The result of SPEC JVM98.

JVM98 results observing the run rules because they did
not have necessary libraries. The results of them are
not given in Fig. 11 because of it.

Several JIT compilers showed better results than
shuJIT even though the results of shuJIT could be
several times faster than the interpreter. One rea-
son is that Classic VM, the target JVM of OpenJIT,
TYA, sunwjit.so and shuJIT is not originally very
performance-oriented. Another reason is that shuJIT
had been developed as a baseline compiler. A baseline
compiler should be light-weight and it is used even as
an alternative of an interpreter. For example, ORP [11]
and Jikes RVM [14] have a baseline compiler instead of
an interpreter. Performance-oriented JIT compilers of
Hot Spot VM and IBM Java 2 SE have to limit tar-
get methods their compilation strictly because the com-
pilation takes much time and much compilation hurts
performance oppositely. Those JVMs first use an inter-
preter to run a method if it has not been yet compiled
and compile it when the total number of call to it and
backward jump in the method reaches much number as
1000 or 10000. Efficiency of an interpreter and a base-
line compiler is still important a performance-oriented
compiler cannot compile all methods.

5.2 Time to startup a Java Program

The results shown in 5.1 are peak performance of JIT
compiled code. Those benchmarks do not show JIT
compilation time because they are designed to measure
peak performance. Already-compiled methods are exe-
cuted many times and compilation time takes a slight
time relatively in overall execution time. Otherwise
only execution time of compiled methods is measured.
For example, in SPEC JVM98 a benchmark runs sev-
eral times and the best result is adopted.

We tried comparison of JIT compilation time. The

criteria we adopted is application startup time. JIT
compilation frequently happens while many methods
are called for the first time during application startup
process. Compilation time especially takes much in the
startup time in a setting that a method is compiled
on its first invocation because all called methods are
compiled.

Such a comparison should involve direct measure-
ment of JIT compilation time. But direct measure-
ment is almost impossible if source code is not available
and we cannot have it for several JIT compilers. Fur-
ther, preemptive context switch by OS and Java thread
switch also make it difficult. Application startup time
is an index of usability of the application program and
also is a usability factor of a JVM. Its reduction is still
important however much JIT compilation time is in-
volved.

Application programs used here are a word pro-
cessor Ichitaro Ark 1.1 and an integrated development
environment (IDE) NetBeans 3.3.1. They are practical
software with a certain amount of code, as Ichitaro Ark
has 904 classes, the size of compressed code (JAR file)
is 1652 kilobyte and the size of NetBeans is 2200 kilo-
byte. It is another reason to choose them that we can
easily confirm the completion of their startup by our
own eyes. We measured the startup time with a stop
watch by hand.

The target JIT compilers are JITC 3.6 of IBM Java
2 SE 1.3.0, HotSpot Client VM, Server VM and shuJIT.
They are chosen because we can specify the threshold.
It is the number of invocation of a method in which
the method is compiled. These JIT compilers provide
an invocation counter for each method, decrease it on
its invocation and start compiling the method if the
counter reaches 0. The initial number of the counter
depends on a JIT compiler. It is 2000 in IBM JITC 3.6
for Linux/x86, 1500 in HotSpot Client VM and 10000



12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 3 Startup time of Ichitaro Ark.

Initial number IBM HotSpot HotSpot
of counter shuJIT JITC Client VM Server VM

0 4.4 ∗ 22.1 N/A N/A
3 4.0 14.1 5.9 32.1

1500 4.3 6.3 3.8 ∗ 6.8
2000 4.4 5.7 ∗ 3.7 6.6

10000 4.5 5.2 3.8 5.4 ∗
∞ 3.9 5.0 4.0 4.1

(second)
∗ The default of the initial number

Table 4 Startup time of NetBeans.

Initial number IBM HotSpot HotSpot
of counter shuJIT JITC Client VM Server VM

0 8.9 ∗ 43.3 N/A N/A
3 8.4 28.6 12.0 166.6

1500 10.3 10.8 8.6 ∗ 20.7
2000 10.7 10.6 ∗ 8.5 20.9

10000 13.2 10.5 8.9 17.2 ∗
∞ 12.2 14.0 13.0 13.4

(second)
∗ The default of the initial number

in HotSpot Server VM. In shuJIT it is 0 because the
compiler is a baseline compiler which has to possibly
compile all called methods.

We measured startup time for each initial numbers
as 0, 3, 2000 and 10000. The results of Ichitaro Ark is
shown in Fig. 3 and Fig.4 is for NetBeans. ∞ means
prohibition of JIT compilation. An interpreter executes
an entire application in that case. HotSpot VMs could
not run all Java programs if the initial number is set as
less than 3. In Fig. 3 and Fig.4, N/A reflect it.

For the results in Fig. 3 and Fig.4, comparison be-
tween different JIT compilers cannot be strictly fair,
because they have different interpreters and JVMs and
the timing in which invocation counters are decrement
varies according to the compilers. ShuJIT works with
the Classic VM and IBM JITC uses a modified ver-
sion of the JVM. HotSpot VM is a completely different
JVM from them. The timing of shuJIT is method in-
vocations. IBM JITC takes backward branches in ad-
dition to method invocations. HotSpot VM also takes
branches and invocations but it is not clear whether the
JVM takes account of the direction of a branch.

An exception is the initial number 0. In that case
all called methods become targets of JIT compilation
and all compilers can be compared impartially. In other
cases JIT compilation time seems to affect startup time
much. HotSpot Server VM is known to take much time
to compile a method and the results show it takes over
30 seconds with the initial number 3. It is natural to
take the result as startup time reflects JIT compilation
time well. Heavier JIT compilers tend to take more
time and The results in Fig. 3 and Fig.4 back up light-
ness of shuJIT’s JIT compilation.

6. Conclusion

A Java Just-in-Time compiler shuJIT achieved ease of
use as a research base and light-weight compilation. In
this paper, we described code generation method and
optimization techniques implemented in the compiler.
The compiler demonstrates practical performance as
several times faster than an interpreter while its compi-
lation takes smaller amount of time. These properties
are sufficient to be a baseline compiler which is possibly
used even as an alternative of an interpreter. The com-
piler also takes relatively small amount of development
work as it starts working in 50 days after the start of
its development.

For the light-weight optimization techniques, we
discussed implementation, effects on performance, im-
plication in the code generation method and the Java
specifications. We could have the following results. Ef-
ficiency of method invocation affects many benchmarks
much. Instruction folding is effective to the code gen-
eration method of shuJIT. Handling exceptions with
signal takes much time in case an exception is thrown
but the cost can be compensated by a certain number
of normal executions. And we showed a code patch-
ing technique whereby we can eliminate a performance
penalty caused by the Java specifications. The tech-
nique is suitable for a baseline compiler because it
enables JIT compilation on the first invocation of a
method.

Another goal of the development of shuJIT was
to be a base of derived researches which modify JIT-
compiled code. The compiler has been used as a base
by other researchers, not only us and the goal has been
well achieved.

Future work includes comparison between inter-
preter and baseline compiler in performance, usability
and development cost. Compilation strategy and its
construction methodology are also worthwhile. The
strategy will involve disposal strategy of JIT com-
piled code considering memory consumption and per-
formance gain.
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