
MetaVM: A Transparent Distributed Object System
Supported by Runtime Compiler

Kazuyuki Shudo Yoichi Muraoka
School of Science and Engineering

Waseda University
Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract MetaVM is a distributed object system
for Java virtual machine. It allows programmers
to deal with remote objects in the same way they
do local objects. Therefore, it can provide a single
machine image to programmers. We implemented
a runtime compiler of Java bytecode to provide the
facilities. The runtime compiler generates a na-
tive code which can handle remote objects beyond
the network besides the local objects. The compiler
uses semantic expansion, which is a technique that
changes the original semantics of a Java bytecode.

This paper presents the simple programming in-
terface, the code generation method of MetaVM,
and our experimental performance results. The re-
sults demonstrate efficiency of remote operations.

Keywords: distributed object system, network
transparency, Java Just-In-Time compiler

1 Introduction

A distributed object system is an instrumen-
t to develop a network distributed system in
object-oriented programming languages. One
of important benefits of such systems is to
release programmers from the burden of ex-
changing information via a network. Pro-
grammers can write a distributed system in
an object-oriented manner without concern for
communication protocols.

Java [1] has recently been rapidly adopted as
a programming language to develop distribut-
ed systems. Java language and virtual machine
(JVM) [2] have many dynamic features desir-
able for use in distributed systems. For exam-

ple, a JVM can load code from another com-
puter via a network, and run the code safe-
ly without affecting the data and users on the
computer where it is run.

MetaVM is a distributed object system we
have developed. The system strongly depends
on a runtime compiler to achieve its location
transparency. For performance reasons, most
JVMs have a runtime compiler called Just-In-
Time (JIT) compiler. A runtime compiler con-
verts Java bytecode to processor native code
during program execution, and an underlying
processor actually executes the native code.
Therefore, we can say that the runtime compil-
er defines how Java bytecode is recognized, and
controls the semantics of the bytecode. The
runtime compiler we have developed generates
a native code which operates remote objects
as well as local objects. Such a modification of
program semantics is called “semantic expan-
sion”.

MetaVM achieves object location trans-
parency by applying semantic expansion. Pro-
grammers, and even bytecode instructions, do
not have to be aware of the distinction between
local and remote objects (Section 3). There-
fore, programmers would be able to see a single
machine image of computers.

In this paper, we describe the structure,
the simple programming interface, and the
code generation method of MetaVM. We also
present experimental results that include the
latency of remote operations and the perfor-
mance of local execution.

Java
Virtual Machine

shuJIT
MetaVM
 Library

Java
Virtual Machine

shuJIT
MetaVM
 Library

.....

Network

Single Virtual Machine View

User Program

Java MetaVM

Figure 1: Structure of MetaVM

2 Overview of MetaVM

Figure 1 shows the structure of MetaVM.
The system consists of computers connected
with TCP/IP. Each computer has a JVM, a
runtime compiler called shuJIT [3][4], and a
MetaVM library.

shuJIT A runtime compiler of Java bytecode.
While shuJIT can work as an ordinary JIT
compiler for FreeBSD and Linux on Intel
IA–32, it can also support MetaVM. The
shuJIT generates native code which is ca-
pable of handling remote as well as local
objects. Its code generation method is dis-
cussed in Section 4.

MetaVM library A class library written in
Java. It performs most of the roles for
MetaVM that include communications,
forwarding operations to remote objects,
and supplying class definitions over a net-
work.

We can use an ordinary Java compiler and
a JVM with the runtime compiler because any
change or addition to the JVM and the lan-
guage has not been introduced.

2.1 Programming Interface

Programmers have to know only a method to
specify the place where sequent object cre-
ations are done. The following code segment
is an example of how to create an object on a
remote computer.

// A designation of the place
// on which objects should be created.
VMAddress addr = new VMAddress("hostname");
MetaVM.instantiationVM(addr);

// An instantiation.
Object obj = new Object();

// A designation which specifies that
// instantiations should be done locally.
MetaVM.instantiationVM();

An invocation to the method
instantiationVM() associates the place spec-
ified as the argument with the thread currently
being executed. Note that the invocation does
not affect other threads at all. A programmer
can exploit all functions of the Java language
to deal with the obj object even though it is a
remote object.

3 Transparency

In this section, we discuss what we consid-
er as transparency by comparing MetaVM
with the existing distributed object systems
[5][6][7][8][9][10] for C++ and Java. We also
mention a few of the remaining differences be-
tween a true single JVM and a single machine
image provided by MetaVM.

3.1 Transparency provided by
MetaVM

3.1.1 Absence of Special Preparation

A programmer has to only compile a source
code with a normal Java compiler. A few of
the existing systems are capable of doing this.

With most of these existing systems, a pro-
grammer has to specify methods or functions
that are to be invoked remotely. The declara-
tion should be written in IDL (interface def-
inition language) for CORBA [5] and in the
interface of the Java language for Java RMI
[8]. Additionally, RMI needs preprocessing by
a rmic stub compiler. HORB [10] and CORBA
implementations also require similar prepara-
tion.

3.1.2 Type of Remote Reference

By using MetaVM, a programmer and an
already-compiled bytecode can deal with a re-
mote reference in the same type as it would be
the actual remote object. Semantic expansion
of type checking instructions (instanceof and
checkcast) enables this.

With RMI, any remote object is dealt in the
predeclared interface type. Voyager uses the
same way as RMI, except it provides an inter-
face generation tool.

3.1.3 Remote Reference to Array

In a JVM, arrays are also objects. Existing
systems have not allowed the referring of an
array remotely, but MetaVM does.

3.1.4 Semantics of Argument Passing

When a method is invoked in Java, a reference
to an argument object is passed to the callee
method. MetaVM preserves the semantics in
the case of passing objects via a network. Fur-
thermore, if the passed reference points to a
local object, the remote reference is automat-
ically replaced with a local reference. The re-
placement of a reference is difficult to do with-
out assistance by a JVM or a runtime compiler.
This preservation of the semantics is one of the
notable attributes of MetaVM.

3.1.5 Access to Array Elements and
Fields

Besides allowing remote method invocation,
MetaVM enables access to the elements of a
remote array and the fields of a remote object.
Existing systems for Java and C++ do not per-
mit such operations because the systems per-
form remote operations using polymorphism of
method invocation.

3.2 Incompatibility with a True Sin-
gle JVM

3.2.1 Distributed Class Objects

Each JVM individually loads a classfile which
has the definition of a class. There-
fore, class objects (which are instances of
java.lang.Class class) represent one class,
but they are distributed to each JVM. Conse-
quently, class variables belonging to class ob-
jects may have different values, although they
should have a sole value in a true single JVM.

4 Code Generation Method

Native code generated by shuJIT transmits an
instruction for an object operation to a remote
JVM if the target object of the operation is
a remote object. The native code invokes the
MetaVM library and actual transmission and
communication are performed by the library.

The shuJIT generates the following native
code for a bytecode instruction that operates
an object:

if ((obj instanceof Proxy) && remote flag)

delegates the operation to the MetaVM library
else

operates the object normally

The obj is a reference to the target of the op-
eration and the Proxy is a class for represent-
ing a remote reference. The remote flag is
an internal boolean flag that indicates whether
MetaVM should show a remote reference as a
raw Proxy object or as a remote object. This
flag belongs to each thread. In short, the op-
eration is delegated to the remote computer if
the target of the operation is a remote object
and the flag is set.

A different native code is generated for a
bytecode instruction which creates a new in-
stance:

if (remote flag &&

!(clazz is a class whose instances
should be passed by copy))

creates an instance on the remote computer

else

creates an instance on the local computer

Here the clazz is a class whose instance
should be created. The generated native code
judges whether the target object of the opera-
tion stays on a remote computer or a local com-
puter. Because the judgement is performed in
runtime, it introduces overheads to execution
performance, even if there are no remote op-
erations. We measured the overheads and the
results are discussed in Section 5. The size of
a generated code may be larger than the code
which does not support remote operation.

For the following bytecode instructions, shu-
JIT will generate a code different from what
shuJIT working as a normal JIT compiler will
generates.

• Creation of objects

– Class (not array)
new

– Array class
newarray, anewarray, multianewarray

• Access

– Field
getfield, putfield

– Array element
[ailfdbcs]aload,
[ailfdbcs]astore

• Get array length
arraylength

• Method invocation
invoke{virtual, special,
interface}

• Type check
checkcast, instanceof

• Monitor handling
monitorenter, monitorexit

‘[. . .]’ equals one of characters in the brackets
and ‘{. . .}’ equals one of words separated by
comma.

Although a JVM has over 200 bytecode
instructions, Only the 30 instructions listed

above have to be treated. Furthermore, many
segments of native code can be shared by sev-
eral instructions.

5 Experimental Results

We measured the performance of two kinds of
remote operations and overheads introduced to
local operations. All experiments were done
using 233-MHz Pentium equipped computer,
Linux 2.2.1, and JDK 1.1.7. A runtime com-
piler TYA [11] was used with all systems ex-
cept for MetaVM which required shuJIT. The
version of Voyager used was 2.0.2, HORB was
1.3beta4, and RMI was the one attached to the
JDK.

5.1 Remote Operation

Remote operation performance was measured
and compared. Each experiment was per-
formed for both one computer and two comput-
ers connected via a network. The one computer
experiment should show only overheads intro-
duced by remote operation support. It should
not show any latency of network. Conversely,
if the operation can exploit the parallelism be-
tween caller and callee and they overlap, the
parallelism is spoiled.

In our experiment using two computers, the
second computer had a 350 MHz Pentium I-
I, Linux 2.2.9, and JDK 1.1.7. Remote oper-
ations were initiated by the former computer
and referred to the latter one. The network
used was a 10 Mbps Ethernet.

5.1.1 Method Invocation

Figure 2 and 3 show the latency of
an one time remote invocation for the
method which accepts two arguments and
returns nothing (void method(Object obj1,
Object obj2)).

RyORB had the smallest latency. The la-
tency of MetaVM was almost the same as that
of the other systems.

5.1.2 Field Access

Latency of method invocation (on a machine)
(void method(Object, Object))

1.60 1.65

2.47
2.62

2.78

0.00

0.50

1.00

1.50

2.00

2.50

3.00

RyORB HORB MetaVM RMI Voyager

m
se

c.

Figure 2: Latency of remote method invocation
(one computer)

Latency of method invocation (via network)
(void method(Object, Object))

1.54 1.55

2.05
2.26 2.32

0.00

0.50

1.00

1.50

2.00

2.50

RyORB HORB MetaVM Voyager RMI

m
se

c.

Figure 3: Latency of remote method invocation
(two computers)

Figure 4 and 5 show the latency of an one
time remote read and write to a 32-bit integer
field. Actually, except for MetaVM, an invo-
cation to an accessor method that we prepared
was done instead of a field access because they
do not support remote field access.

MetaVM shows relatively better results
compared to the remote method invocation.
The reason for this was that remote field ac-
cess is one of the native functions of MetaVM.

5.2 Local Operation

As mentioned in Section 4, MetaVM intro-
duces a certain amount of overhead into the
local execution of a Java program even if the
program does not perform any remote opera-

Latency of field access (on a machine)

0.
83

8 0.
99

3
1.

07

1.
72

1.
94

0.
84

7 1.
00 1.

06

1.
71

1.
96

0.00

0.50

1.00

1.50

2.00

HORB RyORB MetaVM Voyager RMI

m
se

c.

write
read

Figure 4: Latency of remote field access (one
computer)

Latency of field access (via network)

0.
81

0.
99 1.

03

1.
58

1.
95

0.
78

0.
98

0.
94

1.
46

1.
80

0.00

0.50

1.00

1.50

2.00

MetaVM RyORB HORB Voyager RMI

m
se

c.

write
read

Figure 5: Latency of remote field access (two
computers)

tions. We measured how much overhead was
introduced.

Figure 6 shows the results for CaffeineMark
3.0 [12] and Figure 7 shows the results for the
Linpack benchmark [13]. CaffeineMark shows
the number of times the JVM can perform a
job in a specific time. The four conditions for
our local operation test were as follows: with-
out a runtime compiler, with shuJIT (which
does not support MetaVM), with MetaVM
whose remote array handling function was dis-
abled (indicated as ‘no array’), with MetaVM
operating with its full features (‘full spec.’).

The ‘Float’ of CaffeineMark was the bench-
mark that experienced a significant decrease.
But, the decrease introduced by MetaVM was
limited to 53%, which is the ratio of MetaVM

CaffeineMark 3.0

0

500

1000

1500

2000

2500

3000

Sieve Loop Logic String Float Method

no JIT(Linux)

shuJIT

MetaVM(no array)

MetaVM(full spec.)

Figure 6: Performance of local execution – Caf-
feineMark 3.0

Linpack benchmark

1.973

5.407 5.407

3.576

0

1

2

3

4

5

6

no
JIT(Linux)

shuJIT MetaVM(no
array)

MetaVM(full
spec.)

M
flo

ps

Figure 7: Performance of local execution – Lin-
pack benchmark

to shuJIT. All results with MetaVM were bet-
ter than those for the Java bytecode interpreter
except for a benchmark where shuJIT was in-
ferior to the interpreter (The ‘Method’ of Caf-
feineMark).

If remote array handling is disabled,
MetaVM copies arrays when they are passed
over a network. In that case, the semantics of
distributed execution by MetaVM can be dif-
ferentiated from a local execution. The results
shows that part of the decrease of performance
is avoidable if we submit to such incompati-
bility of the program semantics. For instance,
performance of the Linpack benchmark did not
decrease when the array handling function is

disabled because the benchmark did not con-
tain any object operations except array access-
es.

6 Related Work

The cJVM [14] is a JVM to provide a single sys-
tem image of a cluster of computers. There is
currently no runtime compiler available which
can work with the cJVM even though the
cJVM is aimed at achieving high performance.
Development of the interpreter does not affec-
t a runtime compiler working with the inter-
preter. In the end we still have to develop the
runtime compiler.

Obliq [15] is an object-oriented language
with a distributed lexical scope. Our study
suggests that the type of network transparen-
cy provided by Obliq can be achieved even in
Java virtual machines. Moreover, our method
basically exploits the high performance of na-
tive code unlike the interpretation, because
MetaVM cooperates with a runtime compiler.

OpenJIT [16] is another runtime compiler of
Java bytecode. Most of it has been written in
Java so programmers can control the behavior
of the compiler by using the Java language. We
are not yet sure whether or not it is possible to
develop a MetaVM-like system with OpenJIT.
In principle, OpenJIT can provide the facilities
which are necessary to implement MetaVM.

At University of California at Berkeley,
research on low-latency communications via
Myrinet in the Java language has been done
[17]. Here shuJIT was used as the basis on
which a kind of semantic expansion was built.

7 Conclusion

We described a method to construct a trans-
parent distributed object system for a Java
virtual machine. The method implies the se-
mantic expansion of bytecode instructions by a
runtime compiler. It enabled handling remote
objects as well as local objects, and provided
a single machine image to programmers. We
have developed a system named MetaVM and

demonstrated the semantic expansion. In re-
sults of our performance evaluations, MetaVM
demonstrated low latency although the system
achieved a higher level of transparency.

References

[1] James Gosling, Bill Joy, and Guy L. Steele
Jr. Java Language Specification. Addison
Wesley, 1996.

[2] Tim Lindholm and Frank Yellin. The
JavaTM Virtual Machine Specification.
Addison Wesley, 1997.

[3] Kazuyuki Shudo and Yoichi Muraoka. Ef-
ficient implementation of strict floating-
point semantics. In Proc. of 2nd Work-
shop on Java for High-Performance Com-
puting (in conj. with ICS’00), May 2000.

[4] Kazuyuki Shudo. shuJIT—JIT compiler
for Sun JVM/x86, 1998.
http://www.shudo.net/jit/.

[5] Object Management Group, Inc. COR-
BA/IIOP 2.3.1 Specification.
http://www.omg.org/corba/corbaiiop.html.

[6] Inc. Sun Microsystems. JavaTM IDL Doc-
umentation.
http://www.javasoft.com/products/jdk/idl/.

[7] ObjectSpace, Inc. Voyager.
http://www.objectspace.com/products/
Voyager/.

[8] Ann Wollrath, Roger Riggs, and Jim
Waldo. A distributed object model for
the JavaTM system. In The Second
Conference on Object–Oriented Technol-
ogy and Systems (COOTS) Proceedings,
pages 219–231, 1996.

[9] Ryo Neyama. RyORB—Ryo’s object re-
quest broker for Java, 1998.
http://www.shogi.ne.jp/RyORB/.

[10] Satoshi Hirano. HORB: Distributed exe-
cution of Java programs. In Proceedings
of World Wide Computing and Its Appli-
cations, March 1997.

[11] Albrecht Kleine. TYA Archive.
http://sax.sax.de/˜ adlibit/.

[12] Pendragon Software Corporation. Caf-
feineMark 3.0.
http://www.pendragon-
software.com/pendragon/cm3/.

[13] Jack Dongarra
and Reed Wade. Linpack benchmark —
Java version. http://www.netlib.org/
benchmark/linpackjava/.

[14] Yariv Aridor, Michael Factor, and Avi Te-
perman. cJVM: a single system image of a
jvm on a cluster. In Proc. of 1999 Interna-
tional Conference on Parallel Processing
(ICPP-99), September 1999.

[15] Luca Cardelli. A language with distribut-
ed scope. Computing Systems, 8(1):27–59,
1995.

[16] S. Matsuoka, H. Ogawa, K. Shimura,
Y. Kimura, K. Hotta, and H. Takagi.
OpenJIT — a reflective Java JIT compil-
er. In Proc. of OOPSLA ’98 Workshop
on Reflective Programming in C++ and
Java, pages 16–20, October 1998.

[17] Matt Welsh and David Culler. Jaguar:
Enabling efficient communication and I/O
from Java. In Concurrency: Practice
and Experience, Special Issue on Java for
High-Performance Applications, Decem-
ber 1999.

