
MetaVM: A Transparent Distributed Object System
Supported by Runtime Compiler

Kazuyuki Shudo Yoichi Muraoka
School of Science and Engineering

Waseda University
Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract MetaVM is a distributed object system
for Java virtual machine. It allows programmers
to deal with remote objects in the same way they
do local objects. Therefore, it can provide a single
machine image to programmers. We implemented
a runtime compiler of Java bytecode to provide the
facilities. The runtime compiler generates a na-
tive code which can handle remote objects beyond
the network besides the local objects. The compil-
er uses semantic expansion, which is a technique
that changes the original semantics of a Java byte-
code.

Keywords: distributed object system, network
transparency, Java Just-In-Time compiler

1 Introduction

MetaVM is a distributed object system, which
strongly depends on a runtime compiler to
achieve its location transparency. For per-
formance reasons, most Java virtual machines
(JVM) [1] have a runtime compiler called Just-
In-Time (JIT) compiler. A runtime compil-
er converts Java bytecode to processor native
code, and an underlying processor actually ex-
ecutes the native code. Therefore, we can say
that the runtime compiler defines how Java
bytecode is recognized, and controls the seman-
tics of the bytecode. The runtime compiler we
have developed generates a native code which
operates remote objects as well as local object-
s. Such a modification of program semantics is
called “semantic expansion”.

MetaVM achieves object location trans-

Java
Virtual Machine

shuJIT
MetaVM
 Library

Java
Virtual Machine

shuJIT
MetaVM
 Library

.....

Network

Single Virtual Machine View

User Program

Java MetaVM

Figure 1: Structure of MetaVM

parency by applying semantic expansion. Pro-
grammers, and even bytecode instructions, do
not have to be aware of the distinction between
local and remote objects (Section 3). There-
fore, programmers would be able to see a single
machine image of computers.

2 Overview of MetaVM

MetaVM consists of computers connected
via a network. Each computer has a JVM, a
runtime compiler called shuJIT [2][3], and a
MetaVM library (Figure 1).

The shuJIT is a runtime compiler of Java
bytecode. While shuJIT can work as an ordi-
nary JIT compiler for FreeBSD and Linux on
Intel IA–32, it can also support MetaVM. The
shuJIT generates native code which is capable
of handling remote as well as local objects. We
can use an ordinary Java compiler and a JVM
with the runtime compiler because any change
or addition to the JVM and the language has

not been introduced.

2.1 Programming Interface

Programmers have to know only a method to
specify the place where sequent object cre-
ations are done. The following code segment
is an example of how to create an object on a
remote computer.

// A designation of the place
// on which objects should be created.
VMAddress addr = new VMAddress("hostname");
MetaVM.instantiationVM(addr);

// An instantiation.
Object obj = new Object();

// A designation which specifies that
// instantiations should be done locally.
MetaVM.instantiationVM();

An invocation to the method
instantiationVM() associates the place spec-
ified as the argument with the thread currently
being executed. A programmer can exploit all
functions of the Java language to deal with the
obj object even though it is a remote object.

3 Transparency

In this section, we discuss what we consider as
transparency by comparing MetaVM with the
existing distributed object systems for C++
and Java including CORBA [4], Voyager [5],
RMI [6], RyORB [7].

3.1 Type of Remote Reference

By using MetaVM, a programmer and an
already-compiled bytecode can deal with a re-
mote reference in the same type as it would be
the actual remote object. Semantic expansion
of type-checking instructions (instanceof and
checkcast) enables this.

3.2 Remote Reference to Array

In a JVM, arrays are also objects. Existing
systems have not allowed the referring of an
array remotely, but MetaVM does.

3.3 Semantics of Argument Passing

When a method is invoked in Java, a reference
to an argument object is passed to the callee
method. MetaVM preserves the semantics in
the case of passing objects via a network. Fur-
thermore, if the passed reference points to a
local object, the remote reference is automat-
ically replaced with a local reference. The re-
placement of a reference is difficult to do with-
out assistance by a JVM or a runtime compiler.
This preservation of the semantics is one of the
notable attributes of MetaVM.

3.4 Access to Array Elements and
Fields

Besides allowing remote method invocation,
MetaVM enables access to the elements of a
remote array and the fields of a remote object.
Existing systems for Java and C++ do not per-
mit such operations because the systems per-
form remote operations using polymorphism of
method invocation.

4 Code Generation Method

Native code generated by shuJIT transmits an
instruction for an object operation to a re-
mote JVM if the target object of the operation
is a remote object. The native code invokes
the MetaVM library and actual transmission
and communication are performed by the li-
brary. The shuJIT generates the following na-
tive code:

if ((obj instanceof Proxy) && remote flag)

delegates the operation to the MetaVM library
else

operates the object normally

The obj is a reference to the target of the op-
eration and the Proxy is a class for represent-
ing a remote reference. The remote flag is
an internal boolean flag that indicates whether
MetaVM should show a remote reference as a
raw Proxy object or as a remote object. This
flag belongs to each thread.

For the following bytecode instructions, shu-
JIT will generate a code different from what
shuJIT working as a normal JIT compiler will
generates.

• Instantiation:
new, newarray, anewarray, multianewarray

• Field access: getfield, putfield
• Array access:

[ailfdbcs]aload, [ailfdbcs]astore
• Get array length: arraylength
• Method invocation:

invoke{virtual, special, interface}
• Type check: checkcast, instanceof
• Monitor handling:

monitorenter, monitorexit

‘[. . .]’ equals one of characters in the brackets
and ‘{. . .}’ equals one of words separated by
comma.

Although a JVM has over 200 bytecode
instructions, Only the 30 instructions listed
above have to be treated. Furthermore, many
segments of native code can be shared by sev-
eral instructions.

5 Experimental Results

All experiments were done using 233-MHz Pen-
tium, Linux, and JDK 1.1.7. A runtime com-
piler TYA was used with all systems except for
MetaVM which required shuJIT. The version
of Voyager used was 2.0.2, HORB was 1.3be-
ta4, and RMI was the one attached to the JDK.
The network used was a 10 Mbps Ethernet.

5.1 Remote Method Invocation

Figure 2 show the latency of an one time
remote invocation for the method which ac-
cepts two arguments and returns nothing (void
method(Object obj1, Object obj2)). The
latency of MetaVM was almost the same as
that of the other systems.

5.2 Remote Field Access

Figure 3 show the latency of an one time
remote read and write to a 32-bit integer field.
Actually, except for MetaVM, an invocation to

Latency of method invocation (via network)
(void method(Object, Object))

1.54 1.55

2.05
2.26 2.32

0.00

0.50

1.00

1.50

2.00

2.50

RyORB HORB MetaVM Voyager RMI

m
se

c.

Figure 2: Latency of remote method invocation

Latency of field access (via network)

0.
81

0.
99 1.

03

1.
58

1.
95

0.
78

0.
98

0.
94

1.
46

1.
80

0.00

0.50

1.00

1.50

2.00

MetaVM RyORB HORB Voyager RMI

m
se

c.

write
read

Figure 3: Latency of remote field access

an accessor method that we prepared was done
instead of a field access because they do not
support remote field access.

MetaVM shows relatively better results
compared to the remote method invocation.
The reason for this was that remote field ac-
cess is one of the native functions of MetaVM.

5.3 Local Operation

MetaVM introduces a certain amount of over-
head into the local execution of a Java program
even if the program does not perform any re-
mote operations.

Figure 4 shows the results for CaffeineMark
3.0. The four conditions for our local oper-
ation test were as follows: without a runtime
compiler, with shuJIT (which does not support
MetaVM), with MetaVM whose remote array
handling function was disabled (indicated as

CaffeineMark 3.0

0

500

1000

1500

2000

2500

3000

Sieve Loop Logic String Float Method

no JIT(Linux)

shuJIT

MetaVM(no array)

MetaVM(full spec.)

Figure 4: Performance of local execution – Caf-
feineMark 3.0

‘no array’), with MetaVM operating with its
full features (‘full spec.’).

If remote array handling is disabled,
MetaVM copies arrays when they are passed
over a network and the semantics of distribut-
ed execution can be differentiated from a lo-
cal execution. The results shows that part of
the decrease of performance is avoidable if we
submit to such incompatibility of the program
semantics.

6 Related Work

The cJVM [8] is a JVM to provide a single sys-
tem image of a cluster of computers. There is
currently no runtime compiler available which
can work with the cJVM even though the
cJVM is aimed at achieving high performance.
Development of the interpreter does not affec-
t a runtime compiler working with the inter-
preter. In the end we still have to develop the
runtime compiler.

Obliq [9] is an object-oriented language with
a distributed lexical scope. Our study suggests
that the type of network transparency provided
by Obliq can be achieved even in Java virtu-
al machines. Moreover, our method basically
exploits the high performance of native code
unlike the interpretation, because MetaVM co-
operates with a runtime compiler.

7 Conclusion

We described a method to construct a trans-
parent distributed object system for a Java
virtual machine. The method implies the se-
mantic expansion of bytecode instructions by
a runtime compiler. It enabled handling re-
mote objects as well as local objects, and pro-
vided a single machine image to programmers.
In results of our performance evaluations, Our
MetaVM demonstrated low latency although
the system achieved a higher level of trans-
parency.

References

[1] Tim Lindholm and Frank Yellin. The JavaTM

Virtual Machine Specification. Addison Wesley,
1997.

[2] Kazuyuki Shudo and Yoichi Muraoka. Effi-
cient implementation of strict floating-point se-
mantics. In Proc. of 2nd Workshop on Java
for High-Performance Computing (in conj. with
ICS’00), May 2000.

[3] Kazuyuki Shu-
do. shuJIT—JIT compiler for Sun JVM/x86,
1998. http://www.shudo.net/jit/.

[4] Object Management Group, Inc. COR-
BA/IIOP 2.3.1 Specification.
http://www.omg.org/corba/corbaiiop.html.

[5] ObjectSpace, Inc. Voyager.
http://www.objectspace.com/products/
Voyager/.

[6] Ann Wollrath, Roger Riggs, and Jim Waldo. A
distributed object model for the JavaTM sys-
tem. In The Second Conference on Object–
Oriented Technology and Systems (COOTS)
Proceedings, pages 219–231, 1996.

[7] Ryo Neyama. RyORB—Ryo’s object request
broker for Java, 1998.
http://www.shogi.ne.jp/RyORB/.

[8] Yariv Aridor, Michael Factor, and Avi Teper-
man. cJVM: a single system image of a jvm
on a cluster. In Proc. of 1999 International
Conference on Parallel Processing (ICPP-99),
September 1999.

[9] Luca Cardelli. A language with distributed s-
cope. Computing Systems, 8(1):27–59, 1995.

