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Abstract. The keyword ‘strictfp’ has recently been introduced into the Java
language and virtual machine specifications. ‘Strictfp’ is a method, class, and
interface modifier. In its syntactical scope, all floating-point operations must keep
the strict semantics defined by the language specification regardless of the processor
on which a Java virtual machine is running. The Intel x86 processor architecture,
however, is not naturally compliant with the semantics, although almost all other
processors are compliant. We have implemented the semantics on a Just-In-Time
compiler which translates Java bytecode to the x86 native code. In the process
we have investigated, developed, and compared efficient methods of achieving the
strictfp semantics. This paper reports these methods and experimental results,
and evaluates their performance. It also addresses problems that remain despite the
introduction of ‘strictfp’.
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1 Introduction

Most recent processor architectures are compliant with IEEE 754 [1], which is a standard prescribing
floating-point arithmetics, including the format of a floating-point number and basic operations like
addition, rounding, and so on. In fact, the SPARC, MIPS, PowerPC and Intel IA–32 (the x86), all
comply with IEEE 754. Nevertheless, the x86 gives different results than the other processors listed
above for certain floating-point operations. This special behavior of the x86 can cause problems
in distributed and parallel computation exploiting heterogeneous computers. Computation results
can vary depending on how sub-tasks are assigned to the computers.

The Java language specification (JLS)[5] required the same floating-point semantics as the
SPARC. Therefore, Java systems for the x861 such as Java virtual machines, just-in-time (JIT)
compilers, and ahead-of-time compilers, had to spend processor cycles to preserve the semantics
and thus suffered a performance penalty. Since Java systems which implement the semantics cannot
exploit the full capacity of these processors, Intel, IBM, and others requested Sun Microsystems
(Sun) to modify the JLS so as to make full use of the x86 and the PowerPC processors. The
activities of the Numerics Working Group of the Java Grande (JGNWG) resulted in changes to the
floating-point semantics of Java language and the introduction of the ‘strictfp’ keyword [2][9][3].

The modifications of the JLS eliminated almost all the performance disadvantages of the x86.
Sun introduced ‘strictfp’ as a class, method, and interface modifier of the Java language. The
original strict semantics were preserved in syntactical and static scope of the modifier, while the
default semantics outside the context of strictfp was relaxed slightly.

1These semantics also affect the IBM PowerPC and other processors. We concentrate on the x86 architecture in
this paper.
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Figure 1: x86’s floating-point value format

An efficient way of implementing the strict semantics has already been proposed by Roger A.
Golliver [2] and the JGNWG has recommended it to Java system developers. Golliver’s technique
can be implemented in several different ways. We implemented them in a JIT compiler [7] to
test their effectiveness and examine their performance. This study represents the first attempt
to implement strict floating-point semantics on JIT compilers. To study not only performance
drawbacks with JIT compilers but also the penalties imposed by the technique itself, we also
developed benchmark programs in C, and modified the assembly code of the programs to satisfy
the semantics. This paper describes the peculiar behavior of the x86 and Golliver’s technique. We
then addresses the implementation of ‘strictfp’ to find a way to make JIT compilers compliant
with ‘strictfp’. We consider rounding precision and choices of scaling methods. The results of
performance comparisons between the scaling methods are also shown.

2 Problem with the x86

This section explains the problem which the x86 floating-point unit imposes on developers of
Java runtime systems. The x86 has a particular extended precision as a floating-point value format,
in addition to single and double precision defined in IEEE 754 (Fig. 1). According to IEEE 754,
normalized numbers are expressed in the following format:

(−1)s2E(1.b1b2 · · · bp−1)

Here each symbol represents:

s : a sign bit (0 or 1)
bi : a bit in significand (0 or 1)
p : precision of significand [bit]
E : exponent

The number of bits taken by the exponent and significand parts is shown in Table 1.
In the x86 processor, floating-point values are always held in the 80-bit extended precision.

Additionally, the x86 does not have machine instructions corresponding to each precision, although
almost all other processors have. For example, SPARC has fmuls and fmuld instructions, and
MIPS has mul.s and mul.d instructions. Instead of instructions such as these, the x86 provides
rounding precision bits in its status register. We can set the bits as one of the three precisions
shown in Fig. 1, causing the results of floating-point operations to be rounded to that precision.



precision single double extended
whole width [bit] 32 64 80

prec. of signif.(p) [bit] 24 53 64
width of E [bit] 8 11 15

max E +127 +1023 +16383
min E -126 -1022 -16382

Table 1: The properties of each precision of x86

Note, however, that only the significand part is rounded. The exponent part is not rounded and
always has a 15-bit width as shown in Fig. 1. In other processors, the exponent is rounded to 8
bits by single-precision operations, and to 11 bits by double-precision operations. Consequently,
the overflow and underflow that occur in other processors may not occur in the x86. For instance,
the following operations in double precision result in +∞ in the SPARC, but 21023 in the x86:

register = +1023
register + = +1023
register − = +1023

The proper overflow threshold must be fulfilled to satisfy the same strict semantics as SPARC.
Additionally, we must also implement the proper gradual underflow behavior, which is prescribed
in IEEE 754 [2].

The problem described here is common to all x86-compliant processors — even x86-compatible
processors designed by companies other than Intel, such as AMD’s K6 and Athlon.

3 Golliver’s Technique

A technique developed by Roger A. Golliver achieves the same strict floating-point semantics for
the x86 as with the SPARC and the other processors [2]. It is the best technique currently known
and JGNWG strongly encourages developers of the Java runtime system based on the x86 to adopt
it. The technique consists of two sub-techniques, which are store-reload and scaling.

3.1 store-reload

The exponent part (by default, 15 bits) has to be rounded to the proper width (11 bits for double
precision and 8 bits for single precision) for the strict semantics. We can achieve this rounding
by storing the result to memory in the appropriate precision and reloading it to a floating-point
register from memory. The exponent part of the results is also rounded when the result is stored
to memory. This technique is called store-reload. All the four rules of arithmetic require it.

3.2 scaling

It is possible, however, for the double-rounding problem to occur when the store-reload technique
is applied alone. Thus, the store-reload technique alone cannot satisfy the semantics. In certain
cases, an operation result is rounded twice and deviates from the desirable value rounded only once.
An operation result can be a denormalized (subnormal) number in double or single precision but



that number is represented as a normalized number in the x86 extended precision with the x86’s
wider exponent range. In this case, the exponent of the operation result is first rounded to 15 bits
and then rounded to 11 or 8 bits again, when store-reload is applied. This double-rounding can
occur in multiplication and division, so these two types of operations have to be looked at more
closely.

� �53 (or 24) bits

� �53 (or 24) bits

0.00 . . .00 1xx . . .xx 100 . . .00 1
or 0xx(one or more ‘1′)xx . . . × 2(−1022(or −126))

�

LSB of the final result

(note that ‘0 . . .0’ is a sequence of ‘0’ and ‘x’ is a ‘0’ or ‘1’.)

Figure 2: A binary number that is rounded twice.

Fig. 2 shows the format of values rounded twice in this manner. The following double-precision
operation is an example affected by such double rounding:

1.112808544714844E − 308 × 1.0000000000000002

(in IEEE 754 double precision: 0x0008008000000000 × 0x3ff0000000000001)

The least significant bit (LSB) of the rounded result should be incremented by carrying up to
preserve the strict semantics. But the LSB is not incremented if it is rounded once with the 15-bit
exponent and rounded again with the 11- or 8-bit exponent.

Scaling is a technique that prohibits this sort of double rounding. It causes rounding with
the desirable threshold corresponding to a precision of the operation and preserves the gradual
underflow behavior. Multiply one of the operands by a scale, which is a constant number, ahead of
a floating-point operation (scale down or up). Next, multiply the reciprocal of the constant number
by the result (scale up or down). Assume that to scale down the multiplicand or the dividend in
advance, the scale should be 2−16382−(−1022) in the case of double precision and 2−16382−(−126) for
single precision.

4 Implementation of Strict Semantics

We implemented Golliver’s technique on shuJIT [7], which is a JIT compiler for the x86. JIT
compilers that are compliant with the strict semantics have to generate native code that deals with
the following:

• Rounding precision.

• Overflow and underflow (including gradual underflow),
achieved with store-reload and scaling.
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This section explains how to make the JIT compiler compliant with the strictfp and discuss-
es the efficient management of rounding precision and overflow and underflow. Several methods
can be used to achieve the right overflow and underflow behavior. The performance of several
implementations is evaluated in Section 5 because the choice affects the penalty introduced into
floating-point operations.

4.1 Modification of the Just-In-Time compiler

We chose shuJIT as the Java runtime system to be modified to implement the strict semantics.
shuJIT is a Java bytecode just-in-time (JIT) compiler for a combination of the x86, Sun classic VM,
and Linux/FreeBSD. It has been publicly available on the world wide web since September 1998.
Its compilation method is simple and requires a low overhead. But it’s performance is sufficient
to make it a practical compiler. The compiler translates Java bytecode into the x86 native code
almost one to one, like TYA [4], which is another JIT compiler. But, in contrast with TYA, a
pre-assembled native code segment for a bytecode instruction has five variations corresponding to
five stack states (Fig.3). Each code segment not only has a state ahead of the execution of the
segment but also has a state behind. The compiler connects these code segments along the states.

As described above, the compiler does not perform the usual compilation techniques such as
register allocation and instruction scheduling. Accordingly, code generated by shuJIT cannot run
as fast as the compilers from IBM or Inprise. Nevertheless, this compiler is practical. But shu-
JIT is suitable for experiments involving modifications to the Java runtime system. It is easy to
modify the behavior of JIT-compiled native code since we can change the native code directly by
hand. Consequently, shuJIT has been used as the base compiler by researchers [10][8] investigating
modifications to the Java runtime system.

We introduced additional internal instructions into shuJIT to implement strictfp. The com-
piler generates a sequence of internal instructions from the Java bytecode instructions, and then
translates the internal instructions into x86 native code. The following internal instructions were
added:

• Pre-loading and post-releasing of scales:
strictenter, strictexit



• Floating-point operations compliant with the strict semantics:
fmul strict, dmul strict, fdiv strict, ddiv strict

Java runtime systems compliant with its specification have to correctly handle the default
semantics when strictfp is not specified, because the JLS also prescribes the default semantics.
The proper default semantics requires the attention of Java runtime system developers. The default
semantics can be achieved by such as controlling the rounding precision corresponding to each
operation, or the store-reload technique. shuJIT satisfies the default semantics by setting the
rounding precision as double and using the store-reload technique.

In this study, special internal instructions for the strict semantics are provided for only multipli-
cation and division, not for addition and subtraction. The behavior of shuJIT results in this design.
Multiplication and division need both store-reload and scaling, but addition and subtraction need
only store-reload (Section 3). A strict version of addition and subtraction is unnecessary because
shuJIT does store-reload whenever floating-point operations are performed. For other JVM’s, it
may be necessary to take specific actions to handle addition and subtraction semantics.

We provided two switches in shuJIT in order to control the behavior of the compiler. One,
‘frcstrictfp’, which forces all floating-point operations to obey the strict semantics. The other,
‘ignstrictfp’, instructs the compiler to ignore the strictfp modifier. These switches can be
specified via the environment variable ‘JAVA COMPILER OPT’. They are useful in examining the
performance of existing programs in the strict context.

4.2 Rounding Precision

Generated native code has to deal with the rounding precision bits in the control word of the x86
floating-point unit (FPU). It is clearly sufficient to set it as the precision corresponding to each
operation, for example, single precision for a single-precision operation. But frequent re-setting is
inefficient because setting the rounding precision involves memory access, which introduces large
access latency if a cache miss occurs.

In fact it is safe to keep double precision as long as the store-reload technique applies to every
single-precision operation. In other words, rounding precision can be double throughout the strict
context, and setting a precision corresponding to each operation is not necessary. When a single-
precision operation is performed with rounding precision as double, the significand of the result of
the operation is rounded twice:

1. Rounded to double (53 bits) precision when it is stored in an FPU register.

2. Rounded to single (24 bits) precision when it is stored in memory (store-reload).

If the double-rounded result can be different from the number rounded only once to single precision,
keeping the rounding precision as double causes a problem, and cannot be done. In reality, there
is no problem. The results of single-precision addition and subtraction are never affected by the
former rounding because the significand of the result reaches only 25 bits at most. The product
reaches 48 bits at most. The quotient can reach 54 bits or more but it cannot take the form which
suffers double rounding as shown in Fig. 4.

4.3 Overflow and Underflow

A combination of store-reload and scaling techniques satisfies the strict floating-point semantics
completely (Section 3). In this study, we do not have to implement the store-reload technique anew
because shuJIT always does it. However, scaling must be implemented and we have several choices
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Figure 4: The significand that suffers the double rounding.

when implementing it: a way of scaling, the timing of loading scales, the selection of pre-loading
scales, and the format of scales in memory.

First of all, there are two methods that operate to scale a floating-point number:

1. Multiply by the n-th power of 2 (with the fmul instruction).

2. Use the fscale instruction of x86.

fscale is a machine instruction for scaling by the n-th power of 2.
Secondly, we can choose the timing to load scales into FPU registers:

1. When scaling is carried out.

2. When a strictfp method is called (pre-loading).

3. When the JIT compiler is initialized.

There is a trade-off between these choices. Trying to save memory accesses with pre-loading causes
the FPU registers to be occupied for a long time. We implemented and compared the first and
second of these three choices.

Next, which scale do we load into the FPU register? Because half the scales are reciprocals of
the remaining half, half can be calculated on demand even if they are not loaded from memory.
Therefore, we have the following choices:

• All four scales:

– For double precision: 2−(16383−1023) and 2(16383−1023).

– For single precision: 2−(16383−127) and 2(16383−127).

• Two scales:
2−(16383−1023) and 2−(16383−127). When post-operation scaling, divide the operation result by
these scales instead of multiplying the result by the reciprocal provided as a scale in advance.
Or calculate the reciprocal and multiply it.



• Only the necessary scales:
Load only scales for single or double. Because all four scales for both single and double
precisions are not always necessary, we can omit unnecessary scales.

We chose simple implementations as follows:
When scaling is performed with . . .

• Multiplication: pre-load all four scales.

• fscale instruction: pre-load two scales (−(16383 − 1023) and −(16383 − 127)).

This decision is based on the cost of calculating the reciprocal number. Scaling with multiplication
requires the real reciprocal, while scaling with the fscale instruction takes the exponent of the
reciprocal. Therefore, in the case of fscale, calculating the reciprocal is only turning over the sign
of the exponent. It is achieved with the fchs machine instruction and the cost of the instruction is
relatively low compared with the cost of calculating the real reciprocal. Consequently, we decided
to pre-load all four scales for scaling with multiplication and two scales for the fscale method.

We can also choose the format of scales in memory. When a scale is loaded into an FPU
register, it is translated from the format in memory to extended precision format in a register. The
performance of single- and double-precision floating-point formats and a 32-bit integer format was
compared, noting that the integer format is allowed only with the fscale scaling. The format would
affect traffic across the memory hierarchy from the memory to the registers and the translation
costs from the format to the extended precision format. However, no difference was observed
between double and single floating-point formats. The integer format needed additional 130 or 140
milli-seconds for 107 times translations on a 333-MHz Pentium II processor. Hence, we adopted
single-precision format which occupies less memory than double.

5 Experimental Performance Results

Scaling method Pre-load shuJIT C & assembly code BulletTrain
time (msec) rate time (msec) rate time (msec) rate

raw (not strict) N/A N/A 3463 1.00� 3290 1.00�

only store-reload (not strict) 3683 1.00� 3530 1.02 N/A N/A
fscale insn. yes 5631 1.53 5521 1.59 N/A N/A
fscale insn. no 5733 1.56 5656 1.63 6980 2.12
multiplication yes 9843 2.67 9663 2.79 N/A N/A
multiplication no 10698 2.90 10344 2.99 N/A N/A

�: The standard of rates.

Table 2: Performance of multiplication

Test programs were developed to compare the efficiency of the different methods in order to
implement the strict floating-point semantics. We implemented not only test programs in Java
language, but also C programs that does the same test. Then we modified the assembly code
derived from the C program in order to implement the strict semantics in the several ways stated
in Section 4. In addition to our implementations, BulletTrain[6] 1.4.0 was evaluated. It is an
ahead-of-time compiler of Java bytecode which supports the strictfp.



Scaling method Pre-load shuJIT C & assembly code BulletTrain
time (msec) rate time (msec) rate time (msec) rate

raw (not strict) N/A N/A 8489 1.00� 330† 1.00�

only store-reload (not strict) 8460 1.00� 8527 1.00 N/A N/A
fscale insn. yes 25167 2.97 24982 2.94 N/A N/A
fscale insn. no 25248 2.98 25024 2.95 14440† 43.8
multiplication yes 23705 2.80 23489 2.77 N/A N/A
multiplication no 24388 2.88 23951 2.82 N/A N/A

�: The standard of rates.
†: These measured times do not make sense because the calculation results deviate from

SPARC’s and shuJIT’s.

Table 3: Performance of division
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The test programs repeat a loop (which has 10 multiplications or divisions in its body) 106

times, so the number of operations is 107. In the C program, each operation takes one operand
from an FPU register and the other from memory: almost all memory accesses will hit data cached
in a processor. We used ‘1.23456789012345’ as the operand of all operations. We should take
care of the operands of multiplication and division because the latency of these operations depends
strongly on its operands. The number we chose involved a relatively large latency.

The amount of time taken by all 107 operations was measured. All tests were carried out on a
Mobile 333-MHz Pentium II, Linux 2.2.15-pre15, and Blackdown Java Development Kit 1.2.2 RC4.
Table 2 and Fig. 5 show the results when multiplications were repeated. Table 3 and Fig. 6 present
the division results.

The results of shuJIT and the results of native code are almost identical. This indicates that
shuJIT introduces almost no overhead in such small benchmark programs. In case of multiplication,
scaling with the fscale instruction shows better performance than scaling with multiplication. S-
caling with multiplication introduces additional two multiplying operations to one original operation
and the number of operations becomes three times as many as in the original raw code. Therefore,
an observed performance decline (2.77∼2.88) seems to be appropriate. Regarding division, the two
scaling methods in shuJIT incur roughly the same overhead. Scaling with multiplication is slightly
better than the fscale method.

Consequently, scaling with the fscale method suits for multiplication and division prefers the
multiplication method. The effect of pre-load in performance is small in comparison with the
overhead introduced by the scaling itself. Although these results are useful for examining methods
of implementing strict semantics, we should keep in mind that they are somewhat limited. We did
only a simple permutation of native code in this study. A floating-point operation was expanded
into a fixed native code sequence that complies with the semantics. If a generated code sequence is
combined with surrounding other code and then some optimizations are applied, different results
may be obtained.



6 Remaining Problems

The ‘strictfp’ keyword and its semantics have been incorporated into the Java language specifi-
cation (JLS). Nevertheless, in reality a few problems still remain. This section lists these problems
and shows what Java runtime system developers should take care of.

6.1 Lack of Implementation

Implementations of the strictfp and its strict floating-point semantics on the x86 are rare. Even
Sun has not implemented it in their Java virtual machines, although even though they published the
language specification describing the strictfp. There have been only two implementations. One
is BulletTrain [6]. This is an ahead-of-time compiler, which translates Java class files that contain
bytecode into the x86 native code. The other is shuJIT, on which we implemented strictfp.

6.2 Java Compiler Support of strictfp

Most Java compilers calculate numerical expressions at compile time as much as they can. Because
the calculations have to be carried out in an appropriate context — default or strict — Java
compilers must be aware of strictfp. The Sun’s Java compiler javac takes no account of the
context. It always assumes the default context. By running a Java compiler on shuJIT, we can
confirm the compliance of the Java compiler with strictfp.

6.3 Single-precision Operations in Default Context

The floating-point semantics in the default context were relaxed by the introduction of the strictfp
into the JLS. But as before, there are still some constraints even in the default context. The width
of exponent bits was relaxed but the significand has to comply with the precision of each operation,
24 bits for single operation and 53-bit for double. Developers of the Java runtime system should
note this specification.

To maintain the appropriate width of significand bits, the default semantics needs accurate con-
trol of the rounding precision or the store-reload technique. If the underlying processor supports the
Streaming SIMD Extensions (SSE) instructions, which is an instruction set implemented in Pentiu-
mIII and newer Celelon, we can utilize certain instructions of SSE for single-precision operations to
preserve the appropriate width. This is more efficient way than controlling the rounding precision,
and the store-reload technique because the SSE instructions do not have to access memory.

7 Conclusion

In this paper, we have addressed the x86’s problematic specification in relation to floating-point
operations and Golliver’s solution. We have developed several methods of implementing Golliver’s
solution and discussed their characteristics. These methods were implemented in a JIT compiler
called shuJIT and their performance was compared. This is the first attempt to implement strict
floating-point semantics in a JIT compiler. These experiments yielded guidelines for implementing
the strictfp keyword and its semantics. We also addressed problems remaining despite the fact
that the strictfp keyword has been introduced into the Java language specification.

Programming languages other than Java do not have any language factor like the strictfp.
It is interesting to incorporate the strict semantics in other languages including C and Fortran in
terms of language design and implementation. The incorporation is in demand for clustering of



various computers and distributed, global, and heterogeneous computing. Experiments on other
x86-compatible processors such as AMD’s Athlon and Pentium are interesting because they have
different architectures from the Pentium II used in this study.
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