17th APAN Meetings, Application Tech. Workshop: P2P and Grid: Convergence and Challenges **P3: Personal Power Plant** Makes over your PCs into power generator on the Grid Kazuyuki Shudo <shudo@ni.aist.go.jp>, Yoshio Tanaka, Satoshi Sekiguchi Grid Technology Research Center, AIST, Japan Personal Grid Technology Power Research Plant

P3: Personal Power Plant

- Middleware for distributed computation
 - Traditional goals
 - Cycle scavenging
 - Harvest compute power of existing PCs.
 - Internet-wide distributed computing
 - E.g. distributed.net, SETI @home
 - Challenging goals
 - Aggregate PCs and expose them as an integrated Grid resource.
 - Integrate P3 with Grid middleware ?
 - Circulation of computational resources
 - Transfer individual resources (C2C, C2B) and also aggregated resources (B2B).
 - Commercial dealings need a market and a system supporting it.

Plant

Personal

Power

Plant

Design Goals

Application neutral

- cf. Client software of traditional dist. comp. projects (e.g. distributed.net) is tightly coupled with a few applications.
- P3 is decoupled from applications and users can submit apps into a PC pool.

Practical

- not only for research.
 - There have been many many middleware for research purpose.
 - Development of P3 is funded to promote the development of economy.
- A Protein-Folding application is working on P3 and we test practical use of P3.

Scalable

- of course 😊
- We could test P3 with only dozens of PCs so far.
- But we're measuring other scalability factors including throughput of workunit-processing by a master.

NA(P)T and firewall traversable

- Now, Most PCs are located behind a firewall on the Internet.
- To overcome this restriction, many dist. comp. systems use only HTTP as communication protocol and limit communications to one-way (client -> server).

NA(P)T and firewall traversable

P3 uses JXTA for all communications.

- JXTA is a widely accepted P2P protocol, project and library that provides common functions P2P software requires.
- JXTA enables bidirectional communication over NA(P)T and many kinds of firewall (incl. unidirectional HTTP only FW).
 - P3 provides message-passing API for parallel programming besides masterworker API.

Other aims in adopting JXTA:

- Scalability: JXTA Project set its scalability target as 300,000 peers are active in 1,500,000 peers.
- Configuration-less: A P3 peer can discover other peers and submitted jobs with JXTA's discovery feature.
- Multi-protocol: JXTA relay peers mediate messages between TCP, HTTP, IP multicast and possibly other protocols like Bluetooth.

Project

ΙΧΤΑ

Choice of applications by PC providers

- PC providers (participants in a dist. comp. project) should be able to choose jobs to which their PCs are devoted.
 - It is very important for PC providers to be able to control their own resources.
- In a traditional Internet-wide project, a PC provider has only one choice, install or not.
- Using P3, a PC provider can confirm a digital signature of a job and decide whether to accept it or not.
- Adaptation to both intra- and Internet
 - On the Internet, we have to assume that there are malicious PC providers.
 - they will try to cheat the software and the operators of the project.
 E.g. pretending to finish calculation, DoS attack and so on.
 - P3 can confirm the correctness of collected results by voting.
 - Distribute identical workunits and verify the returned results.
 - This function can be disabled and a veriyfying logic can be substituted.

Easy deployment and automatic updating

- The amount of installation and updating labor are proportional to the number of PCs and can be huge.
- Vulnerable client software will be mostly left as it is if the software cannot be updated automatically somehow.
 - A vulnerability was found in SETI @home client software in April 2003.
- P3 can be installed by only mouse-clicks on a web page and updated automatically.
 - cf. Java Web Start (JWS)

Structure of P3

Job management subsystem

- Host jobs (submitted apps) and control their execution.
 - Host: A daemon program runs on a provided PC.
 - Controller: by which a resource user submit and control jobs.
 - Job monitor: shows a state of a job and attending Hosts.
- Parallel programming libraries
 - Application programs that use these libraries can run on P3.
 - Master-worker
 - Message Passing (like MPI)

Job Management Subsystem: Host A daemon program runs on a provided PC. A Host can be invoked in a head(GUI)-less mode. In that case, it decides whether to join a found job or not according to a policy supplied by the PC provider (owner). Host can host multiple jobs simultaneously. P3 Host: : "sumomo12 - shudo" - E X File Option Timestamp Name 🐉 R C5 Attack 2004/01/22 **Discovered** jobs Ping Pong performance 2004/01/22 <u> Protein Enldinn (MMC)</u> stdout stderr [jarfile = rc5attack.jar] WorkResult(jd=39) sent. Output from [jarfile = rc5attack.jar] WorkUnit(jd=41) received. [jarfile = rc5attack.jar] WorkResult(jd=41) sent. a running job [jarfile = rc5attack.jar] WorkUnit(jd=43) received. [jarfile = rc5attack.jar] WorkResult(id=43) sent. Entering RC5 Attack...done

		gement nitor			ste	em:			
	P	Person Power Plant	CII Elap # of # of Total	pdate Time sed Time f workers WorkUnit rogress CPU Time ation Speed	0:5 8 10000 1 4:14:2	- 0 [14493 done, 14.49%	, 85507 remain		rmatio
lost Inf	forn	nation		-)1/27 05:21:16		ι 5:30:5!	9)
Rank	name	Result Received [WU]	CPU Time	<u>Average Calc</u> Speed Isec/WUI		<u>per WU</u>	<u>Average Calc</u> <u>Time</u> [sec/WU]	os	СРИ
				Speed [sec/WU]	\bigcirc			os 4	CPU i386
Rank	name sumomo11 -	Result Received [WU]	CPU Time	Speed [sec/WU]	\bigcirc	<u>per WU</u> [sec]	<u>Time</u> [sec/WU]	os 4	
Rank	name sumomo11 - shudo sumomo12 -	Result Received [WU]	<u>CPU Time</u> 0:54:29	<u>Speed</u> [sec/WU] 1.24 1.27	\bigcirc	per WU [sec] 1.09	Time [sec/WU] 1.21	os 4	1386
Rank 1 2	name sumomo11 - shudo sumomo12 - shudo sumomo14 -	Result Received [WU] 2711 2653	CPU Time 0:54:29 0:50:35	<u>Speed</u> [sec/WU] 1.24 1.27	0 0 0 0	per WU [sec] 1.09 0.82	Time [sec/WU] 1.21 1.14	os 4 4 4	i386 i386
Rank 1 2	name sumomo11 - shudo sumomo12 - shudo sumomo14 - shudo sumomo13 -	Result Received [WU] 2711 2653 2523	CPU Time 0:54:29 0:50:35 0:36:18	<u>Speed</u> [sec/WU] 1.24 1.27 1.33		per WU [sec] 1.09 0.82 0.76	Time [sec/WU] 1.21 1.14 0.86		i386 i386 i386
Rank 1 2 3 4 5	name sumomo11 - shudo sumomo12 - shudo sumomo14 - shudo sumomo13 - shudo	Result Received [WU] 2711 2653 2523 2172	CPU Time 0:54:29 0:50:35 0:36:18 0:40:33	Speed [sec/WU] 1.24 1.27 1.33 1.55 1.76		per WU [sec] 1.09 0.82 0.76 0.77	Time [sec/WU] 1.21 1.14 0.86 1.12		i386 i386 i386 i386
Rank 1 2 3 4 5	name sumomo11 - shudo sumomo12 - shudo sumomo14 - shudo sumomo13 - shudo sumomo15 -	Result Received [WU] 2711 2653 2653 2523 2172 1916	CPU Time 0:54:29 0:50:35 0:36:18 0:40:33 0:29:21	Speed [sec/WU] 1.24 1.27 1.33 1.55 1.76 2.67	0 0 0 0 0 0	per WU [sec] 1.09 0.82 0.76 0.77 0.77	Time [sec/WU] 1.21 1.14 0.86 1.12 0.92		i386 i386 i386 i386 i386

Job Submission by Controller

Participation in a Job

Parallel Programming Libraries

- Application programmers can use 2 libraries:
 - Master-worker
 - Message passing (like MPI)
 JXTA-MPI

Emulator

- enables us to run parallel apps on one PC.
- It is extremely useful to test and debug the application in advance of real deployment.

Performance Evaluation

- JXTA provides a rich set of functions, but... I sn't it slow?
 - Certainly, not fast. But enough for many cases.
- Performance measurements:
 - Basic communication performance
 - Latency and throughput
 - Application
 - RC5 attack
- Environments:
 - 2.4 GHz Xeon PCs, Gigabit Ethernet
 - Linux 2.4.19, Java 2 SDK 1.4.2, JXTA 2.1
 - Rich PC and network compared with today's Internet, but in which limits of P3 software can be measured clearly.

- 1 byte round-trip communication. A one-way comm. takes
 - TCP (in C): 0.062 msec
 - TCP (in Java): 0.064 msec
 - P3's Message passing: 4.5 msec

Not fast

- It can limit the number of workunits that a master can process. One workunit takes several milliseconds.
- Enough for many situations, but JXTA should be improved.

Communication Throughput

- Message passing library is used.
- About 100 Mbps (100 x 10 ** 6 bps).
 - Not very fast on Gigabit Ethernet, but P3 can fill Internet connections to small offices and homes.
- Throughput declines with larger messages.
 - Such a large message should be divided.

- Brute-force attack on RC5 cryptsystem. same as distributed.net working on RSA RC5 challenge.
- P3 is tolerant of such granularity of workunits (taking several seconds) with dozens of PCs.

Related Work

JNGI

- being developed by Sun Microsystems.
- uses JXTA.
- utilizes peer groups to manage many PCs efficiently.
 - cf. while P3 creates peer groups for each job.
- Though a paper has been published (in GRI D 2002), most part of the idea has not been implemented.
- XtremWeb, GreenTea, Javelin, Bayanihan, ...
 - PC providers cannot choose application programs.
 - Programming model is limited to master-worker or divideand-conquer.
 - Firewall are not considered.
 - use Java RMI, TCP and so on.
 - Not tolerant of malicious PC providers or obscure.

Public release

- 2Q 2004 planned
- Test with more PCs
 - Several hundreds or more PCs
 - with AIST super cluster ?
 - Having over 1000 PCs

Write a paper

A Japanese paper will be accepted, but

