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P3: Personal Power Plant
Middleware for distributed 
computation
� Traditional goals

� Cycle scavenging
� Harvest compute power of existing PCs.

� Internet-wide distributed computing
� E.g. distributed.net, SETI@home

� Challenging goals
� Aggregate PCs and expose them as an 

integrated Grid resource.
� Integrate P3 with Grid middleware ?

� Circulation of computational resources
� Transfer individual resources (C2C, 

C2B) and also aggregated resources 
(B2B).

� Commercial dealings need a market and 
a system supporting it.

Conventional dist. computing

Transfer and aggregation of 
individual resources



Design Goals
Application neutral
� cf. Client software of traditional dist. comp. projects (e.g. 

distributed.net) is tightly coupled with a few applications.
� P3 is decoupled from applications and users can submit apps 

into a PC pool.
Practical
� not only for research.

� There have been many many middleware for research purpose.
� Development of P3 is funded to promote the development of 

economy.
� A Protein-Folding application is working on P3 and we test 

practical use of P3.
Scalable
� Of course ☺
� We could test P3 with only dozens of PCs so far.
� But we’re measuring other scalability factors including 

throughput of workunit-processing by a master.



Design Goals (cont’d)

NA(P)T and firewall traversable
� Now, Most PCs are located behind a firewall on the 

Internet.
� To overcome this restriction, many dist. comp. systems use 

only HTTP as communication protocol and limit 
communications to one-way (client -> server).



Design Goals (cont’d)
NA(P)T and firewall traversable

� P3 uses JXTA for all communications.
� JXTA is a widely accepted P2P protocol, project and library 

that provides common functions P2P software requires.
� JXTA enables bidirectional communication over NA(P)T and 

many kinds of firewall (incl. unidirectional HTTP only FW).
� P3 provides message-passing API for parallel programming besides master-

worker API.

� Other aims in adopting JXTA:
� Scalability: JXTA Project set its scalability target as 300,000 peers 

are active in 1,500,000 peers.
� Configuration-less: A P3 peer can discover other peers and submitted 

jobs with JXTA’s discovery feature.
� Multi-protocol: JXTA relay peers mediate messages between TCP, 

HTTP, IP multicast and possibly other protocols like Bluetooth.



Design Goals (cont’d)
Choice of applications by PC providers
� PC providers (participants in a dist. comp. project) should be able to 

choose jobs to which their PCs are devoted.
� It is very important for PC providers to be able to control their own 

resources.
� In a traditional Internet-wide project, a PC provider has only one 

choice, install or not.
� Using P3, a PC provider can confirm a digital signature of a job 

and decide whether to accept it or not.
Adaptation to both intra- and Internet
� On the Internet, we have to assume that there are malicious PC 

providers.
� they will try to cheat the software and the operators of the project. 

E.g. pretending to finish calculation, DoS attack and so on.
� P3 can confirm the correctness of collected results by voting.

� Distribute identical workunits and verify the returned results.
� This function can be disabled and a veriyfying logic can be 

substituted.



Design Goals (cont’d)

Easy deployment and automatic updating
� The amount of installation and updating labor are 

proportional to the number of PCs and can be huge.
� Vulnerable client software will be mostly left as it is if the 

software cannot be updated automatically somehow.
� A vulnerability was found in SETI@home client software in 

April 2003.
� P3 can be installed by only mouse-clicks on a web page and 

updated automatically.
� cf. Java Web Start (JWS)



Structure of P3
Job management subsystem
� Host jobs (submitted apps) and control their 

execution.
� Host: A daemon program runs on a provided PC.
� Controller: by which a resource user submit and control 

jobs.
� Job monitor: shows a state of a job and attending Hosts.

Parallel programming libraries
� Application programs that use these libraries can 

run on P3.
� Master-worker
� Message Passing (like MPI)



Job Management Subsystem:
Controller

A resource user submits and control jobs 
with Controller.

Attending Hosts

A submitted job



Job Management Subsystem:
Host

A daemon program runs on a provided PC.
� A Host can be invoked in a head(GUI)-less mode. In that case, it decides 

whether to join a found job or not according to a policy supplied by the 
PC provider (owner).

� Host can host multiple jobs simultaneously.

Discovered jobs

Output from
a running job



Job Management Subsystem:
Job Monitor

Calculation
speed

Number of
processed
workunitsTotal view Host view

Web browser



Job Management Subsystem:
Job Monitor  (cont’d)

Job Information

Host Information



Net Peer Group
(always existing JXTA’s base group)

Peer Groups (PG)
Net Peer Group
� A PG always 

exits in a JXTA 
apps.

Base Peer Group
� A PG for P3.
� All Hosts and 

Controllers join 
this PG first.

Job Peer Group
� A PG for each 

job.
� All job-related 

comm. are 
performed in this 
PG.
� Job control
� Parallel 

processing

Host

Host
Host

Host

Host

Base Peer Group

Controller

HostController
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Job Peer Group
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Job Submission by Controller

Base Peer Group

Controller

Job Peer Group

Application
Code

Application
Code Controller

(1) Create a Job Peer Group

(2) Join the Job Peer Group

(3) Share application code in the group
with JXTA CMS service



Participation in a Job

Base Peer Group

HostHost

Job Peer Group

Application
Code

Application
Code

(1) Discover Job Peer Groups

(2) Decide to join a discovered job

(4) Discover Application code

HostHost

(3) Join the Job Peer Group

(5) Obtain the code from a Controller



Parallel Programming Libraries
Application programmers can use 2 libraries:
� Master-worker
� Message passing (like MPI) - JXTA-MPI

Emulator
� enables us to run parallel apps on one PC.
� It is extremely useful to test and debug the application in 

advance of real deployment.

P2P comm. Library:  JXTA

Object Passing
Library

Master-Worker
Library

Application

Object
Passing

Emulator

Message Passing
Library

Other
Libs

Master-Worker API Message Passing API

Application



Performance Evaluation
JXTA provides a rich set of functions, but… Isn’t it 
slow?
� Certainly, not fast. But enough for many cases.

Performance measurements:
� Basic communication performance

� Latency and throughput
� Application

� RC5 attack
Environments:
� 2.4 GHz Xeon PCs, Gigabit Ethernet
� Linux 2.4.19, Java 2 SDK 1.4.2, JXTA 2.1
� Rich PC and network compared with today’s Internet, but 

in which limits of P3 software can be measured clearly.



Communication Latency
1 byte round-trip communication.
A one-way comm. takes
� TCP (in C): 0.062 msec
� TCP (in Java): 0.064 msec
� P3’s Message passing: 4.5     msec

Not fast
� It can limit the number of workunits that a 

master can process.  One workunit takes several 
milliseconds.

� Enough for many situations,
but JXTA should be improved.



Communication Throughput
Message passing library is used.
About 100 Mbps (100 x 10 ** 6 bps).
� Not very fast on Gigabit Ethernet, but P3 can fill Internet connections to small 

offices and homes.
Throughput declines with larger messages.
� Such a large message should be divided.
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Application Performance
A load test with small workunits.
� Brute-force attack on RC5 cryptsystem.

same as distributed.net working on RSA RC5 challenge.
� P3 is tolerant of such granularity of workunits (taking several seconds) 

with dozens of PCs.
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processing time:
� 0x8000: 1.4 sec
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� Very small. Unusual 
for Internet-wide 
computation.



Related Work
JNGI
� being developed by Sun Microsystems.
� uses JXTA.
� utilizes peer groups to manage many PCs efficiently.

� cf. while P3 creates peer groups for each job.
� Though a paper has been published (in GRID 2002), most part 

of the idea has not been implemented.
XtremWeb, GreenTea, Javelin, Bayanihan, …
� PC providers cannot choose application programs.
� Programming model is limited to master-worker or divide-

and-conquer. 
� Firewall are not considered.

� use Java RMI, TCP and so on.
� Not tolerant of malicious PC providers or obscure.



Future Plan
Public release
� 2Q 2004 planned

Test with more PCs
� Several hundreds or more PCs
� with AIST super cluster ?

� Having over 1000 PCs

Write a paper
� A Japanese paper will be accepted, but


