
P3: Personal Power Plant
Makes over your PCs into power generator on the Grid

Kazuyuki Shudo <shudo@ni.aist.go.jp>,
Yoshio Tanaka,

Satoshi Sekiguchi
Grid Technology Research Center, AIST, Japan

17th APAN Meetings,
Application Tech. Workshop:
P2P and Grid: Convergence and Challenges

P3: Personal Power Plant
Middleware for distributed
computation
� Traditional goals

� Cycle scavenging
� Harvest compute power of existing PCs.

� Internet-wide distributed computing
� E.g. distributed.net, SETI@home

� Challenging goals
� Aggregate PCs and expose them as an

integrated Grid resource.
� Integrate P3 with Grid middleware ?

� Circulation of computational resources
� Transfer individual resources (C2C,

C2B) and also aggregated resources
(B2B).

� Commercial dealings need a market and
a system supporting it.

Conventional dist. computing

Transfer and aggregation of
individual resources

Design Goals
Application neutral
� cf. Client software of traditional dist. comp. projects (e.g.

distributed.net) is tightly coupled with a few applications.
� P3 is decoupled from applications and users can submit apps

into a PC pool.
Practical
� not only for research.

� There have been many many middleware for research purpose.
� Development of P3 is funded to promote the development of

economy.
� A Protein-Folding application is working on P3 and we test

practical use of P3.
Scalable
� Of course ☺
� We could test P3 with only dozens of PCs so far.
� But we’re measuring other scalability factors including

throughput of workunit-processing by a master.

Design Goals (cont’d)

NA(P)T and firewall traversable
� Now, Most PCs are located behind a firewall on the

Internet.
� To overcome this restriction, many dist. comp. systems use

only HTTP as communication protocol and limit
communications to one-way (client -> server).

Design Goals (cont’d)
NA(P)T and firewall traversable

� P3 uses JXTA for all communications.
� JXTA is a widely accepted P2P protocol, project and library

that provides common functions P2P software requires.
� JXTA enables bidirectional communication over NA(P)T and

many kinds of firewall (incl. unidirectional HTTP only FW).
� P3 provides message-passing API for parallel programming besides master-

worker API.

� Other aims in adopting JXTA:
� Scalability: JXTA Project set its scalability target as 300,000 peers

are active in 1,500,000 peers.
� Configuration-less: A P3 peer can discover other peers and submitted

jobs with JXTA’s discovery feature.
� Multi-protocol: JXTA relay peers mediate messages between TCP,

HTTP, IP multicast and possibly other protocols like Bluetooth.

Design Goals (cont’d)
Choice of applications by PC providers
� PC providers (participants in a dist. comp. project) should be able to

choose jobs to which their PCs are devoted.
� It is very important for PC providers to be able to control their own

resources.
� In a traditional Internet-wide project, a PC provider has only one

choice, install or not.
� Using P3, a PC provider can confirm a digital signature of a job

and decide whether to accept it or not.
Adaptation to both intra- and Internet
� On the Internet, we have to assume that there are malicious PC

providers.
� they will try to cheat the software and the operators of the project.

E.g. pretending to finish calculation, DoS attack and so on.
� P3 can confirm the correctness of collected results by voting.

� Distribute identical workunits and verify the returned results.
� This function can be disabled and a veriyfying logic can be

substituted.

Design Goals (cont’d)

Easy deployment and automatic updating
� The amount of installation and updating labor are

proportional to the number of PCs and can be huge.
� Vulnerable client software will be mostly left as it is if the

software cannot be updated automatically somehow.
� A vulnerability was found in SETI@home client software in

April 2003.
� P3 can be installed by only mouse-clicks on a web page and

updated automatically.
� cf. Java Web Start (JWS)

Structure of P3
Job management subsystem
� Host jobs (submitted apps) and control their

execution.
� Host: A daemon program runs on a provided PC.
� Controller: by which a resource user submit and control

jobs.
� Job monitor: shows a state of a job and attending Hosts.

Parallel programming libraries
� Application programs that use these libraries can

run on P3.
� Master-worker
� Message Passing (like MPI)

Job Management Subsystem:
Controller

A resource user submits and control jobs
with Controller.

Attending Hosts

A submitted job

Job Management Subsystem:
Host

A daemon program runs on a provided PC.
� A Host can be invoked in a head(GUI)-less mode. In that case, it decides

whether to join a found job or not according to a policy supplied by the
PC provider (owner).

� Host can host multiple jobs simultaneously.

Discovered jobs

Output from
a running job

Job Management Subsystem:
Job Monitor

Calculation
speed

Number of
processed
workunitsTotal view Host view

Web browser

Job Management Subsystem:
Job Monitor (cont’d)

Job Information

Host Information

Net Peer Group
(always existing JXTA’s base group)

Peer Groups (PG)
Net Peer Group
� A PG always

exits in a JXTA
apps.

Base Peer Group
� A PG for P3.
� All Hosts and

Controllers join
this PG first.

Job Peer Group
� A PG for each

job.
� All job-related

comm. are
performed in this
PG.
� Job control
� Parallel

processing

Host

Host
Host

Host

Host

Base Peer Group

Controller

HostController

Controller
Job Peer Group

Job Peer Group Job Peer Group

Job Submission by Controller

Base Peer Group

Controller

Job Peer Group

Application
Code

Application
Code Controller

(1) Create a Job Peer Group

(2) Join the Job Peer Group

(3) Share application code in the group
with JXTA CMS service

Participation in a Job

Base Peer Group

HostHost

Job Peer Group

Application
Code

Application
Code

(1) Discover Job Peer Groups

(2) Decide to join a discovered job

(4) Discover Application code

HostHost

(3) Join the Job Peer Group

(5) Obtain the code from a Controller

Parallel Programming Libraries
Application programmers can use 2 libraries:
� Master-worker
� Message passing (like MPI) - JXTA-MPI

Emulator
� enables us to run parallel apps on one PC.
� It is extremely useful to test and debug the application in

advance of real deployment.

P2P comm. Library: JXTA

Object Passing
Library

Master-Worker
Library

Application

Object
Passing

Emulator

Message Passing
Library

Other
Libs

Master-Worker API Message Passing API

Application

Performance Evaluation
JXTA provides a rich set of functions, but… Isn’t it
slow?
� Certainly, not fast. But enough for many cases.

Performance measurements:
� Basic communication performance

� Latency and throughput
� Application

� RC5 attack
Environments:
� 2.4 GHz Xeon PCs, Gigabit Ethernet
� Linux 2.4.19, Java 2 SDK 1.4.2, JXTA 2.1
� Rich PC and network compared with today’s Internet, but

in which limits of P3 software can be measured clearly.

Communication Latency
1 byte round-trip communication.
A one-way comm. takes
� TCP (in C): 0.062 msec
� TCP (in Java): 0.064 msec
� P3’s Message passing: 4.5 msec

Not fast
� It can limit the number of workunits that a

master can process. One workunit takes several
milliseconds.

� Enough for many situations,
but JXTA should be improved.

Communication Throughput
Message passing library is used.
About 100 Mbps (100 x 10 ** 6 bps).
� Not very fast on Gigabit Ethernet, but P3 can fill Internet connections to small

offices and homes.
Throughput declines with larger messages.
� Such a large message should be divided.

0

2

4

6

8

10

12

Data size（KB）

T
h
ro
u
gh
pu
t（
M
B
/
s）

JXTA-MPI

 10 x 10**6 bps

100 x 10**6 bps

21 4 8 16 32 64 128 256 512 1024

10.97 MB/s

100 Mbps

Application Performance
A load test with small workunits.
� Brute-force attack on RC5 cryptsystem.

same as distributed.net working on RSA RC5 challenge.
� P3 is tolerant of such granularity of workunits (taking several seconds)

with dozens of PCs.

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

Number of Workers

S
pe
e
du
p
R
at
io

of keys a workunit: 0x8000

of keys a workunit: 0x4000

of keys a workunit: 0x2000

Ideal Speedup

Workunit
processing time:
� 0x8000: 1.4 sec
� 0x4000: 0.69 sec
� 0x2000: 0.36 sec

� Very small. Unusual
for Internet-wide
computation.

Related Work
JNGI
� being developed by Sun Microsystems.
� uses JXTA.
� utilizes peer groups to manage many PCs efficiently.

� cf. while P3 creates peer groups for each job.
� Though a paper has been published (in GRID 2002), most part

of the idea has not been implemented.
XtremWeb, GreenTea, Javelin, Bayanihan, …
� PC providers cannot choose application programs.
� Programming model is limited to master-worker or divide-

and-conquer.
� Firewall are not considered.

� use Java RMI, TCP and so on.
� Not tolerant of malicious PC providers or obscure.

Future Plan
Public release
� 2Q 2004 planned

Test with more PCs
� Several hundreds or more PCs
� with AIST super cluster ?

� Having over 1000 PCs

Write a paper
� A Japanese paper will be accepted, but

